
Introduction to Neural Networks

Ryan Miller

1 / 26



Review of Logistic Regression

Logistic regression uses a set of observed features, X1, . . . , Xp, to
predict a binary outcome, Y , using the following structure:

ŷi = g(ηi) = 1
1+exp(−ηi )

Where ηi = ŵ0 + ŵ1Xi2 + ŵ2Xi2 + . . . is the linear predictor for the
i th observation.

2 / 26



Review of Logistic Regression

The model’s weights, {w0, w1, . . . , wp}, are found by optimizing the
cross-entropy cost function:

Cost = − 1
n

n∑
i=1

(
yi log(g(ηi)) + (1 − yi)log(1 − g(ηi))

)

This optimization relies upon differentiating the cost function with
respect to the unknown weights, which we can express using chain
rule:

Gradient = ∂Cost
∂g ∗ ∂g

∂η ∗ ∂η
∂w

3 / 26



Review of Logistic Regression

▶ In logistic regression, a linear combination of features is passed
into the sigmoid function to be mapped to output, Ŷ
▶ In this setting, we may call the sigmoid function an activation

function
▶ We can express the model’s structure using the following

diagram:

Input #1

Input #2

Input #3

Input #4

Output

4 / 26



Neural Networks

▶ In logistic regression, the observed features are weighted then
passed into the sigmoid function and mapped to an output

▶ Neural networks derive new features through a similar process
▶ That is, weighted combinations of observed features are passed

into an activation function resulting in a neuron (or hidden unit)
▶ We can set up the structure of our model to contain any

number of neurons
▶ The model’s neurons form a hidden layer of new features
▶ A weighted combination of these neurons can then be passed

into another activation function to predict the output
▶ This structure is a single layer neural network (see next slide)

5 / 26



Single Layer Neural Networks

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

6 / 26



Network Depth

Our previous example used a single hidden layer, but in practice we
can add more hidden layers:

7 / 26



Neural Nets vs. Logistic Regression

Recall that we could express the logistic regression model using the
notation:

ŷi = g(xi)

▶ Here g(xi) = 1
1+exp(−xT

i w)
▶ For a single observation, the output of g() is a scalar
▶ This was because w is a single vector in logistic regression

8 / 26



Neural Nets vs. Logistic Regression

We could express a single layer neural network model as:

ŷi = g(f (xi))

Similarly, we could express a neural network with two hidden layers
as:

ŷi = g(f (h(xi)))

9 / 26



Notation

Because neural networks can contain many hidden layers, we’ll
introduce the following notation to keep track of the model’s
structure:

▶ xi will remain the p-dimensional vector of input features (ie:
the i th row in our data, if it’s in a tabular format)

▶ Superscripts, such as w(1), will indicate the layer of object
▶ z(i) will indicate the linear combination of weights and inputs

in a particular layer
▶ a(i) will indicate the activated output of a particular layer
▶ b will be used to indicate bias terms in linear combinations

10 / 26



Simple Example

Consider a single input feature, X1, and a neural network with two
hidden layers that each contain only a single neuron:

b(1)
1 + w (1)

1 X1 = z(1)
1 → g(z(1)

1 ) = a(1)
1

The output of the first (and only) neuron in our first hidden layer is
a(1)

1 . The model then uses this output as an input to the next
hidden layer:

b(2)
1 + w (2)

1 a(1)
1 = z(2)

1 → g(z(2)
1 ) = a(2)

1

▶ A similar process repeats once more, yielding Ŷ = a(3)
1

11 / 26



Learning the Parameters

Similar to logistic regression, we can use the cross-entropy cost for
binary/categorical Y :

Cost = − 1
n

n∑
i=1

(
yi log(ŷi)) + (1 − yi)log(1 − ŷi))

)

▶ We can use gradient descent to optimize the model’s weights
and biases

▶ This requires use to find the gradient vector, but what are the
components of this vector?

12 / 26



Learning the Parameters

Let’s first use chain rule to solve for gradient vector component
∂Cost
w (3)

1
:

∂Cost
w (3)

1
= ∂Cost

ŷ
∂ŷ
z(3)

1

∂z(3)
1

∂w (3)
1

This works because ŷ is a function of z(3)
1 (sigmoid), and z(3)

1 is a
function of w (2)

1

13 / 26



Learning the Parameters

For our simple example:

▶ ∂Cost
ŷ = y

ŷ − 1−y
1−ŷ

▶ ∂ŷ
z(3)

1
= g(z(3)

1 )(1 − z(3)
1 )

▶ ∂z(3)
1

∂w (3)
1

= a(3)
1

Notice how calculating this component of the gradient requires us
to pass data, X1, through the network to obtain the quantities z(3)

1 ,
a(2)

1 and ŷ

14 / 26



Learning the Parameters

Next, let’s look at the gradient vector component ∂Cost
w (2)

1
:

∂Cost
w (2)

1
= ∂Cost

ŷ
∂ŷ
z(3)

1

∂z(3)
1

∂a(2)
1

∂a(2)
1

∂z(2)
1

∂z(2)
1

∂w (2)
1

▶ This is similar to our previous expression after realizing a(2)
1 is a

function of w (1)
1

▶ Note that gradient components for each bias term are
calculated similarly

15 / 26



Back-propogation

▶ The gradient components of parameters closer to the input
layer reuse quantities that were calculated for components
closer to the network’s output
▶ ∂Cost

ŷ and ∂ŷ
z(3)

1
in our example

▶ This makes it beneficial to work backwards through the model
when calculating the components of the gradient vector
▶ Thus, the application of chain rule to find the gradient of a

neural network is often called the back-propagation algorithm

16 / 26



Forward-propogation

▶ You’ll also hear the term forward-propagation (or forward pass)
referring to the calculation of the cost function function for an
observation (or batch of observations)

▶ As we previously mentioned, the gradient requires several
intermediate quantities that are calculated during
forward-propagation
▶ Thus, the process for optimization begins by feeding an

observation into the existing network (forward-propagation),
then updating the network’s parameters via back-propagation

17 / 26



Another Example

Now let’s suppose our input layer contains two features, X1 and X2,
or x, and our model contains one hidden layer with three neurons:

Input #1

Input #2
Output

Hidden
layer

Input
layer

Output
layer

How many weights and biases are needed as parameters in this
model?

18 / 26



Another Example

The first neuron in the first hidden layer is given by:

b(1)
1 + w (1)

11 X1 + w (1)
12 X2 = z(1)

1 → g(z(1)
1 ) = a(1)

1

The second by:

b(1)
2 + w (1)

21 X1 + w (1)
22 X2 = z(1)

2 → g(z(1)
2 ) = a(1)

2

And the third is defined similarly.

19 / 26



Another Example

In matrix notation:

z(1) = b(1) + W(1)x

and

a(1) = g(z(1))

▶ As you might expect, we can then find the necessary pieces of
the back-propagation algorithm using chain rule and matrix
calculus shortcuts

▶ We’ll rely on existing software to handle this for us

20 / 26



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z) = 0 if z < 0
g(z) = z if z ≥ 0

The derivative of ReLU function is simple (albeit discontinuous), as
it’s 1 if z > 0 and 0 otherwise. Software packages will take the
derivative at z = 0 to be zero to promote greater sparsity.

21 / 26



Activation Functions

Most modern neural networks prefer the ReLU (rectified linear unit)
activation function to the sigmoid function because it can be
computed and stored more efficiently:

g(z) = 0 if z < 0
g(z) = z if z ≥ 0

The derivative of ReLU function is simple (albeit discontinuous), as
it’s 1 if z > 0 and 0 otherwise. Software packages will take the
derivative at z = 0 to be zero to promote greater sparsity.

21 / 26



ReLU vs. Sigmoid

Note: the ReLU function is scaled by 1/5 in this example for ease of
comparison. The function is scale invariant when used as an
activation function in a neural network.

22 / 26



Remarks on Network Depth

▶ Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention
▶ This was partly due to the computational challenges of neural

networks and partly due to misunderstandings related to
network depth

▶ In the 2000s, deep neural networks (ones with many hidden
layers) were found to be very success for image classification
▶ In 2012, a deep neural network architecture named “AlexNet”

led to a boom in deep learning by winning the ImageNet
recognition challenge with accuracy of 84.7% (10.8% better
than the nearest competitor)

▶ Network depth combined with the use of GPUs for efficient
training on massive datasets led to this performance

23 / 26



Remarks on Network Depth

▶ Neural networks first became popular in the 1980s, but in the
1990s methods like random forests, boosting, and support
vector machines received far greater attention
▶ This was partly due to the computational challenges of neural

networks and partly due to misunderstandings related to
network depth

▶ In the 2000s, deep neural networks (ones with many hidden
layers) were found to be very success for image classification
▶ In 2012, a deep neural network architecture named “AlexNet”

led to a boom in deep learning by winning the ImageNet
recognition challenge with accuracy of 84.7% (10.8% better
than the nearest competitor)

▶ Network depth combined with the use of GPUs for efficient
training on massive datasets led to this performance

23 / 26



Intuition on the Role of Hidden Layers

▶ Why do deeper networks perform better on certain types of
data, such as images?

▶ Intuitively, each hidden learning is learning features that are
derived from the previous layer

▶ Hidden layer 1 learns patterns that are simple linear
combinations of the inputs (perhaps vertical and horizontal
edges of varying lengths and directions)

▶ Hidden layer 2 learns patterns that are linear combinations of
the features identified in hidden layer 1 (perhaps simple shapes,
curves, etc.)

▶ The next hidden layer can then learn patterns that are
combinations of those shapes, curves, etc.
▶ At some point, the complexity of the current features provides

enough information to make accurate predictions

24 / 26



Intuition on the Role of Hidden Layers

▶ Why do deeper networks perform better on certain types of
data, such as images?
▶ Intuitively, each hidden learning is learning features that are

derived from the previous layer
▶ Hidden layer 1 learns patterns that are simple linear

combinations of the inputs (perhaps vertical and horizontal
edges of varying lengths and directions)

▶ Hidden layer 2 learns patterns that are linear combinations of
the features identified in hidden layer 1 (perhaps simple shapes,
curves, etc.)

▶ The next hidden layer can then learn patterns that are
combinations of those shapes, curves, etc.
▶ At some point, the complexity of the current features provides

enough information to make accurate predictions

24 / 26



Intuition on the Role of Hidden Layers

Image Credit: https://www.datarobot.com/blog/a-primer-on-deep-learning/

25 / 26

https://www.datarobot.com/blog/a-primer-on-deep-learning/


Closing Remarks

▶ Neural networks involve a lot of parameters and can learn very
complex relationships, but this generally requires a lot of
training data

▶ The simple networks we discussed today tend not to be
commonly used
▶ They aren’t well-equipped to handle spatial structures, which

make them less effective at applications involving image/textual
data

▶ They tend to overfit “flat” or “tabular” data to a greater extent
than methods like random forests or boosted ensembles

▶ Next we’ll learn about convolutional neural networks, a
variation utilizes spatial relationships among features and excels
in computer vision applications

26 / 26


