Ryan Miller

1/13

Introduction

» Random Forests use bagging to build an ensemble of decision
tree models

» Many trees trained on slightly different data contribute to the
model's predictions

» This is an aggregation approach, as each base model can be
trained separately and their results are aggregated

2/13

Introduction

» Random Forests use bagging to build an ensemble of decision
tree models
» Many trees trained on slightly different data contribute to the
model's predictions
» This is an aggregation approach, as each base model can be
trained separately and their results are aggregated
» Today we will discuss boosting approaches, where the base
models in the ensemble are trained sequentially
» Boosting was originally developed as a classifier aimed at
combining many “weak" classifiers into a more powerful
“committee” by Freund and Schapire (1997) as “Adaptive
Boosting” or “AdaBoost.M1"

2/13

Bagging vs. Boosting

Boosting

Bagging
- . e

Independent weak learner training

Iterative weak learner training

3/13

AdaBoost

To begin, suppose Y is a binary variable encoded by {—1,1}, and
define the error rate as:

error = ,112’,: I(yi # G(x;))
i—1

» Here, G(x;) represents the predicted class for observation with
predictors x;
» Notice that if y; does not match the predicted class the
summation is incremented by 1
» Thus, we see that error = 1 — accuracy

4/13

AdaBoost

In AdaBoost, G() is a sum of M sequentially built classifiers trained
on differently weighted versions of the data:

G(x) = Sign < ,,,El\j:l ame(x)>

> «a1,...,ap allow each classifier to contribute differently to the
final prediction (thereby allowing stronger models to contribute
more)

» Each training data-point, (x;, y;) is also given a different weight
for each classifier
» At the first step of the algorithm, these weights are set to % o)
that all observations contribute equally

> At step m, the weights of observations misclassified by G,—1(x)
are increased

5/13

AdaBoost (algorithm)

Pseudocode for the original AdaBoost algorithm:
w=1/n # initialize weights
for i in 1:M:
G_m = model.fit(X, w, y) # fit using weighted data

err m = error(G_m) # calculate error
alpha_m = log((l-err_m)/err_m)
w_i = w_ixexp(a_m*(y_i !'= G_m(x_1i))) # reweight

» Each model’s contribution in the ensemble is based upon it's
accuracy (notice log((1 —0.5)/0.5) = 0)

P If an observation was misclassified, its weight in the next model
is increased by a factor of exp(am)

6/13

AdaBoost (diagram)

Iteration 1

Iteration 2

Iteration 3

+

+
o

7/13

Gradient Boosting

» AdaBoost re-weights observations that are misclassified before
training the next model
» Gradient boosting takes a more general approach - train
subsequent models to the residuals (or loss contributions for
cost functions other than squared error)
» At each iteration, t, of gradient boosting, the algorithm finds a
base model (estimates #):

~n

fr(X) = arg ming (L(y, Je-1 + af(X)))

» For the squared error cost function, this is amounts to fitting
the base model to the residuals

8/13

Gradient Boosting
Consider the squared error cost:

20— Geor + afe(X)) T (y = Fe-1 + af(X))

If we disregard terms without f;, we have:
1 T - 2 T
2(ay’ fi(X) = 2a¥:-1f:(X) + o (X)) £(X))
After differentiating:

2Ta(y — Y1 + af(X))

If « =1 and we substitute r =y — y;" 1, we have %(r — (X)),
which is minimized when f; is fit to the residuals.

9/13

Gradient Boosting (pseudocode)

y ## Initialize residuals
O ## Intitialize model to zero

H H
non

for i in 1:M:
f m = model.fit(X, r) ## Fit model to residuals
f = f + alphaxf_m ## Add new model to ensemble
r - alphaxf_m ## Update residuals

» The output is f, the ensemble model consisting of M different
base models.

» The learning rate, «, is a small positive number that controls
how quickly boosting learns (by limiting how much a model can
contribute to the ensemble)

10/13

Gradient Boosting vs AdaBoost (diagram)

in gradient boosting, misclassified examples

have larger Esiduals, or| loss gradients
-~ D

-

in AdaBoost, misclassified
examples have larger weights

11/13

Gradient Boosting (comments)

» Unlike bagging (random forests), boosting can overfit if too
many base models are used, so the number of boosting
iterations should be careful chosen.

» Smaller learning rates (values of &) combined with more base
models (boosting iterations) tends to achieve the best
performance

» Boosting tends to work best with very simple decision trees
(depths of either 1 or 2)

12/13

Image Credits

> Boosting vs. Bagging - https://www.sciencedirect.com /science/article/pii/S1566253520303195
» AdaBoost diagram - Packt Big data and Business Intelligence
» Gradient Boosting diagram - Ensemble Methods for Machine Learning

13/13

https://www.sciencedirect.com/science/article/pii/S1566253520303195
https://subscription.packtpub.com/book/big-data-&-business-intelligence/9781788295758/4/ch04lvl1sec32/adaboost-classifier
https://www.google.com/url?sa=i&url=https%3A%2F%2Flivebook.manning.com%2Fbook%2Fensemble-methods-for-machine-learning%2Fchapter-5%2Fv-2%2F&psig=AOvVaw1Hon2DOt-2wgPPmV39-fpD&ust=1677965877933000&source=images&cd=vfe&ved=0CBAQjhxqFwoTCMjzwpLcwP0CFQAAAAAdAAAAABAF

