
Boosting

Ryan Miller

1 / 13

Introduction

▶ Random Forests use bagging to build an ensemble of decision
tree models
▶ Many trees trained on slightly different data contribute to the

model’s predictions
▶ This is an aggregation approach, as each base model can be

trained separately and their results are aggregated

▶ Today we will discuss boosting approaches, where the base
models in the ensemble are trained sequentially
▶ Boosting was originally developed as a classifier aimed at

combining many “weak” classifiers into a more powerful
“committee” by Freund and Schapire (1997) as “Adaptive
Boosting” or “AdaBoost.M1”

2 / 13

Introduction

▶ Random Forests use bagging to build an ensemble of decision
tree models
▶ Many trees trained on slightly different data contribute to the

model’s predictions
▶ This is an aggregation approach, as each base model can be

trained separately and their results are aggregated
▶ Today we will discuss boosting approaches, where the base

models in the ensemble are trained sequentially
▶ Boosting was originally developed as a classifier aimed at

combining many “weak” classifiers into a more powerful
“committee” by Freund and Schapire (1997) as “Adaptive
Boosting” or “AdaBoost.M1”

2 / 13

Bagging vs. Boosting

3 / 13

AdaBoost

To begin, suppose Y is a binary variable encoded by {−1, 1}, and
define the error rate as:

error = 1
n

n∑
i=1

I(yi ̸= G(xi))

▶ Here, G(xi) represents the predicted class for observation with
predictors xi
▶ Notice that if yi does not match the predicted class the

summation is incremented by 1
▶ Thus, we see that error = 1 − accuracy

4 / 13

AdaBoost

In AdaBoost, G() is a sum of M sequentially built classifiers trained
on differently weighted versions of the data:

G(x) = Sign
(M∑

m=1
αmGm(x)

)

▶ α1, . . . , αM allow each classifier to contribute differently to the
final prediction (thereby allowing stronger models to contribute
more)

▶ Each training data-point, (xi , yi) is also given a different weight
for each classifier
▶ At the first step of the algorithm, these weights are set to 1

n , so
that all observations contribute equally

▶ At step m, the weights of observations misclassified by Gm−1(x)
are increased

5 / 13

AdaBoost (algorithm)

Pseudocode for the original AdaBoost algorithm:
w = 1/n # initialize weights
for i in 1:M:

G_m = model.fit(X, w, y) # fit using weighted data
err_m = error(G_m) # calculate error
alpha_m = log((1-err_m)/err_m)
w_i = w_i*exp(a_m*(y_i != G_m(x_i))) # reweight

▶ Each model’s contribution in the ensemble is based upon it’s
accuracy (notice log((1 − 0.5)/0.5) = 0)

▶ If an observation was misclassified, its weight in the next model
is increased by a factor of exp(αm)

6 / 13

AdaBoost (diagram)

7 / 13

Gradient Boosting

▶ AdaBoost re-weights observations that are misclassified before
training the next model
▶ Gradient boosting takes a more general approach - train

subsequent models to the residuals (or loss contributions for
cost functions other than squared error)

▶ At each iteration, t, of gradient boosting, the algorithm finds a
base model (estimates f̂t):

f̂t(X) = arg minft
(
L(y , ŷt−1 + αft(X))

)
▶ For the squared error cost function, this is amounts to fitting

the base model to the residuals

8 / 13

Gradient Boosting

Consider the squared error cost:

1
n

(
y − (ŷt−1 + αft(X))

)T (
y − (ŷt−1 + αft(X))

)
If we disregard terms without ft , we have:

1
n (2αyT ft(X) − 2αŷt−1ft(X) + α2ft(X)T ft(X))

After differentiating:

2α
n (y − ŷt−1 + αft(X))

If α = 1 and we substitute r = y − ˆyt−1, we have 1
n (r − ft(X)),

which is minimized when ft is fit to the residuals.

9 / 13

Gradient Boosting (pseudocode)

r = y ## Initialize residuals
f = 0 ## Initialize model to zero

for i in 1:M:
f_m = model.fit(X, r) ## Fit model to residuals
f = f + alpha*f_m ## Add new model to ensemble
r = r - alpha*f_m ## Update residuals

▶ The output is f , the ensemble model consisting of M different
base models.

▶ The learning rate, α, is a small positive number that controls
how quickly boosting learns (by limiting how much a model can
contribute to the ensemble)

10 / 13

Gradient Boosting vs AdaBoost (diagram)

11 / 13

Gradient Boosting (comments)

▶ Unlike bagging (random forests), boosting can overfit if too
many base models are used, so the number of boosting
iterations should be careful chosen.
▶ Smaller learning rates (values of α) combined with more base

models (boosting iterations) tends to achieve the best
performance

▶ Boosting tends to work best with very simple decision trees
(depths of either 1 or 2)

12 / 13

Image Credits

▶ Boosting vs. Bagging - https://www.sciencedirect.com/science/article/pii/S1566253520303195
▶ AdaBoost diagram - Packt Big data and Business Intelligence
▶ Gradient Boosting diagram - Ensemble Methods for Machine Learning

13 / 13

https://www.sciencedirect.com/science/article/pii/S1566253520303195
https://subscription.packtpub.com/book/big-data-&-business-intelligence/9781788295758/4/ch04lvl1sec32/adaboost-classifier
https://www.google.com/url?sa=i&url=https%3A%2F%2Flivebook.manning.com%2Fbook%2Fensemble-methods-for-machine-learning%2Fchapter-5%2Fv-2%2F&psig=AOvVaw1Hon2DOt-2wgPPmV39-fpD&ust=1677965877933000&source=images&cd=vfe&ved=0CBAQjhxqFwoTCMjzwpLcwP0CFQAAAAAdAAAAABAF

