Cross-validation

Ryan Miller

- 1. Tuning parameters
- 2. Cross-validation
- 3. Grid search and tuning parameter optimization

Previously, we learned about k-nearest neighbors, a supervised learning algorithm that makes predictions using the k closest observed samples to a new data-point. In order to use the algorithm, we must provide the following:

- 1. A way of measuring distance
- 2. A value for k
- 3. Whether neighbors should contribute uniformly or be weighted by distance

Tuning Parameters

- A parameter is an unknown value that is required for an algorithm to make predictions
 - Some parameters, such as the coefficients in a regression model, are estimated from the data by the algorithm
- Tuning parameters (sometimes called *hyperparameters*) must be specified before an algorithm can run
 - For k-nearest neighbors, the value of k, the distance metric, and the weighting scheme are tuning parameters

Tuning Parameters

Shown below is the classification accuracy of various kNN models for our toy data (healthy vs. unhealthy classification):

Performance vs. k

For small values of k, models overfit the training data, while for large values of k models are too biased to be useful.

- We don't want to use the test set to determine our tuning parameters
 - This would introduce the very same problems we were trying to avoid by using independent training and testing sets
- So, how might we determine good values for tuning parameters using only the training data?

Cross-validation (CV) is a general term describing methods of repeated data-splitting used to evaluate the performance of a model on data that was not used in the training process:

- 1. Non-exhaustive cross-validation, notably k-fold cross-validation
- Exhaustive cross-validation, notably leave-one-out cross-validation (LOOCV)

Non-exhaustive CV approaches involve randomness, so they are sometimes applied repeated (we'll generally focus on a single use).

Cross-validation helps us *avoid overfitting* by producing reasonable estimates of performance without using the test set:

Performance vs. # Neighbors

k

5-fold Cross-validation

	All Data					
	Training data					Test data
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Finding Parameters
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
	Final evaluation					Test data

k-fold Cross-validation

```
Pseudocode of 5-fold cross-validation:
## Assign n obs into k folds
fold_id = sample(1:k, size = n)
## Loop through each fold:
for i in 1:k
   train_X = samples[fold_id != i]
   train_y = labels[fold_id != i]
   eval_X = samples[fold_id == i]
   eval_y = labels[fold_id == i]
   model.fit(train_X, train_y)
   perform[fold id == k] = model.predict(eval X, eval y)
## Calculate performance
```

score(perform)

k-fold or LOOCV?

- LOOCV is a special case of k-fold CV using k = n (ie: each fold contains just a single observation)
- Compared to k-fold CV, LOOCV is a higher variance procedure
 - Repeating LOOCV on different samples from the same underlying data source will show a greater range of performance estimates
 - Errors are highly correlated in LOOCV due to the high degree of overlap in each training segment

k-fold or LOOCV?

- LOOCV is a special case of k-fold CV using k = n (ie: each fold contains just a single observation)
- Compared to k-fold CV, LOOCV is a higher variance procedure
 - Repeating LOOCV on different samples from the same underlying data source will show a greater range of performance estimates
 - Errors are highly correlated in LOOCV due to the high degree of overlap in each training segment
- k-fold cross-validation offers better generalization, but can be unfeasible for small samples
 - Smaller values of k are also more computationally efficient (especially if parallelization can be used)

The bias-variance trade-off governs how the number of folds impacts the reliability of performance estimates:

- More folds allows larger amounts of data to be used during model training, which should reduce bias
 - However, too many folds will lead to highly correlated training errors, which will increase variance
- Conversely, too few folds can also lead to high variance estimates if model training is to the fold assignments and repeated CV is not used

Most practitioners favor 10-fold or 5-fold CV, with deep learning applications sometimes using smaller numbers of folds, such as k = 3, for computational reasons.

Grid Search

- Cross-validation provides a framework for unbiased performance evaluation using only the training data
 - However, it must be combined with other methods in order to determine the best values for a method's tuning parameters (ie: finding the best number of neighbors)

Grid Search

- Cross-validation provides a framework for unbiased performance evaluation using only the training data
 - However, it must be combined with other methods in order to determine the best values for a method's tuning parameters (ie: finding the best number of neighbors)
- Grid search is a simple (and widely used) approach for finding optimal combinations of tuning parameters using via cross-validation
 - The idea is to systematically and exhaustively search a grid spanning the parameter space

Here's an example parameter grid for kNN that considers $k \in \{3, 4, 5\}$, euclidean or Manhattan distance, and uniform or distance weighting:

k	Distance	Weight	
3	euclidean	uniform	
4	euclidean	uniform	
5	euclidean	uniform	
3	manhattan	uniform	
4	manhattan	uniform	
5	manhattan	uniform	
3	euclidean	distance	
4	euclidean	distance	
5	euclidean	distance	
3	manhattan	distance	
4	manhattan	distance	
5	manhattan	distance	

- Grid search can be computationally expensive, especially when you'd like to tune over a broad range of values for several different tuning parameters
- Randomized search is an alternative method that allows you specify distributions to be randomly sampled from for each tuning parameter
 - For kNN, you might specify k as being sampled from a Poisson distribution with $\mu = \sqrt{n}$ (which is generally a decent starting point for k)

Other Approaches

- Randomized search and grid search approaches can be combined to explore large parameter spaces with greater efficiency
 - For example, you might perform several iterations of random search to eliminate parameter values that lead to poor performance, then you might conduct a grid search over the remaining possibilities

Other Approaches

- Randomized search and grid search approaches can be combined to explore large parameter spaces with greater efficiency
 - For example, you might perform several iterations of random search to eliminate parameter values that lead to poor performance, then you might conduct a grid search over the remaining possibilities
- Successive halving searches are also supported in Python's sklearn library
 - The main idea is to only allow top scoring parameter values to "survive" into later rounds of the search
 - We will not cover this method, but you may consider using it on your final project