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Shortcomings of Linear Regression

Linear regression is a supervised learning approach that models the
dependence of a numeric outcome on a set of predictors as linear:

Y = wo + w1X1 + w2X2 + . . . + wpXp + ϵ

▶ When Y is a binary variable, this model is problematic because
predicted values can fall outside of [0, 1]
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Example (Donner Party Survival)
This model contains two predictors, “Age”, and “Sex” (which is
incorporated into the predictor matrix using one-hot encoding):
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The model predicts males aged 60+ have more than a 100%
probability of death, and males aged 70+ have nearly a 120%
probability of death
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Generalized Linear Models

▶ Generalized Linear Models provide the theoretical framework
for adapting the basic structure of linear regression to
classification tasks
▶ To begin, linear regression can be viewed as the model:

Y ∼ N(η, σI), where: η = wo + w1X1 + w2X2 + . . .

▶ In this model, two components are clearly displayed:
▶ The linear predictor, η (called a prediction score by data

scientists)
▶ A probability model that explains some of the variability in the

outcome
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Generalized Linear Models

▶ The Normal distribution isn’t suitable for a binary outcome, but
the Bernoulli distribution is:

Y ∼ Ber(g(η))

▶ The mean of the Bernoulli distribution is defined as Pr(Y = 1)
▶ So, we must transform our linear predictors using a function,

g(), such that only inputs between 0 and 1 are possible

6 / 14



Logistic Regression
Logistic regression is a generalized linear model that uses the
Bernoulli distribution and the sigmoid function:

g(η) = 1
1+exp(−η)

This function maps prediction scores to probabilities in the follow
manner:
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Observed outcomes (ie: yi = 0 or yi = 1) are considered samples
from a Bernoulli distribution with a mean of g(η)
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Parameters and Cost Function
▶ Just like linear regression, logistic regression involves weights

that must be estimated from the data
▶ However, a different cost function should be used, the most

popular being cross-entropy loss:

Cost = − 1
n

n∑
i=1

(
yi log(g(ηi)) + (1 − yi)log(1 − g(ηi))

)
More intuitively:

Costi = − 1
n log(g(ηi)) if yi = 1

Costi = − 1
n log(1 − g(ηi)) if yi = 0

▶ Notice observations with large prediction scores make minimal
contributions to the cost function if they belong to the positive
class
▶ As an observation’s prediction score, ηi increases, g(ηi) → 1

and log(1) = 0
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Optimization

The cross-entropy cost function doesn’t have a closed form solution,
so it needs to be optimized by gradient descent. For simplicity, we’ll
consider only one stochastic gradient descent:

∂Cost
∂w = −yixi

(
g(xi )(1−g(xi ))

g(xi )

)
+ (1 − yi)xi

(
g(xi )(1−g(xi ))

1−g(xi )

)

Note that by chain rule: ∇log(g(ηi)) = 1
g(ηi ) ∗ ∂g

∂ηi
∗ ∂ηi

∂w

▶ 1
g(ηi ) is the derivative of log(g(ηi)) with respect to g(ηi)

▶ ∂g
∂ηi

= g(xi)(1 − g(xi))
▶ ∂ηi

∂w = xi

Similar arguments apply to the other term
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Stochastic Gradient Descent Algorithm

Skipping some algebra, the gradient function for only one stochastic
gradient descent reduces to:

(g(ηi) − y)xi

Leading to the following update scheme:

w(j) = w(j−1) + α(g(η(j−1)
i ) − y)xi

Where the prediction score, ηi , is computed using weights from
previous iteration.
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Optimization

The examples below demonstrate only one stochastic gradient
descent on 100 data-points generated such that:

Y ∼ Ber
(

1
1+exp(−(0.5+2.5x1))

)
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Compared to linear regression (which had a closed form solution),
logistic regression is much more difficult to optimize
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Visualizing Logistic Regression

Below is what the fitted logistic regression model looks like for the
Donner Party example:
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The most important take-away is that our model follows a defined
parametric structure, and it yields predicted probabilities between 0
and 1.
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Softmax Regression

▶ Logistic regression is designed for binary outcomes; however,
the method can be generalized to multi-label classification
settings
▶ Softmax regression, also known as multinomial logistic

regression, models the probability of class membership for each
class via:

Pr(yi = K ) = exp(wT
K xi )∑Nk

l=1
exp(wT

l xi )

▶ The cost function for softmax regression is:

Cost = −
n∑

i=1

k∑
l=1

⊮(yi = l) ∗ log
(

exp(wT
l xi )∑k

l=1 exp(wT
l xi )

)

▶ For k = 2, this simplifies to the cross-entropy cost function of
logistic regression
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Softmax Regression

▶ Softmax regression is unusual in the sense that uses a
redundant set of parameters
▶ That is, there are a set of weights for each of the k classes, but

the same predictions could be obtained with weights for k − 1
classes

▶ This is evident when comparing the method with logistic
regression, where k = 2 but only 1 set of weights is estimated

▶ For this reason, there’s little value in studying the weights of a
softmax regression model, as there are multiple sets of weights
that also will optimize the cost function
▶ This is in contrast to logistic regression, where the

exponentiation of a weight reflects the multiplicative impact of
a 1-unit change in that variable on the odds of outcome
belonging to the positive class

For more on Softmax Regression: http://deeplearning.stanford.edu/tutorial/supervised/SoftmaxRegression/
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