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Outline

1. Regularization and the bias-variance trade-off
2. Ridge regression
3. Lasso regression
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Review

Consider the basic linear regression model:

Y = wo + w1X1 + w2X2 + . . . + wpXp + ϵ

We’ve previously estimated w, the vector of weights, by optimizing
the following cost function:

Cost = 1
n

n∑
i=1

(yi − ŷi)2 = 1
n (y − Xŵ)T (y − Xŵ)
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Regularized Regression

Regularized regression adds a penalty term to the cost function that
shrinks weight estimates towards zero:

Cost = 1
n (y − Xŵ)T (y − Xŵ) + Pα(ŵ)

- P() is a penalty function involving α, a regularization parameter
that controls the trade-off between each term in the cost function
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Example

When the regularization parameter, α, is large, the penalty term
dominates the cost function and weights are estimated to be zero.
When alpha is zero, cost function reduces to squared error loss.
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Benefits of Regularization

▶ Intuitively, regularization operates under the belief that across
many predictors small weights should be more likely than large
weights
▶ Thus, overfitting can be prevented by using penalization to

discourage larger weight estimates

▶ In 1970, it was shown by Hoerl and Kennard that ridge
regression (a type of regularized regression) can always produce
a lower RMSE than ordinary (unpenalized) regression
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Benefits of Regularization

Mathematically, it’s possible to decompose mean-squared error
(MSE) into bias and variance terms. Here’s a heuristic look at how
these components might look as α is varied:
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Ridge Regression
Ridge regression uses the penalty function:

Pα(w) = α
p∑

j=1
w2

i

This makes the ridge regression cost function:

Cost = 1
n

n∑
i=1

(yi − xT
i w)2 + α

p∑
j=1

w2
i

In matrix form, this looks like:

Cost = 1
n (y − Xŵ)T (y − Xŵ) + αŵT ŵ

Note that ŵT ŵ is the squared L2 Norm of the weight vector (or
||ŵ||22), so the ridge penalty is often called L2 regularization
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Ridge Regression

Similar to ordinary linear regression, minimizing the ridge regression
cost function has a closed-form solution:

ŵ = (XT X + αI)−1XT y

The method gets its name from the “ridge” added to the diagonal
of XT X prior to inversion
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Choosing α

▶ In penalized regression, α is a tuning parameter, with different
values leading to different weight estimates
▶ Larger values of α shrink the weights closer to zero (introducing

more bias while reducing variance)
▶ When α = 0, the ridge regression estimates are the same those

of ordinary linear regression
▶ Because penalization is proportional to the magnitude of wj , it

is important to standardize each variable as a pre-processing
step when using regularization
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Choosing α (example)

Below are results for data that uses pollution and demographic
variables of 60 US metro areas to their predict age-adjusted
mortality:
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Lasso

▶ The ridge penalty provides stability (ie: reduces variance) at
the expense of adding bias
▶ However, it doesn’t truly reduce the complexity of the model

(the number of non-zero weights is the same, regardless of the
amount of penalization)

▶ The lasso (least absolute shrinkage and selection operator)
addresses this shortcoming by promoting sparsity in the
estimated weight vector
▶ The lasso cost function is shown below:

1
n Cost =

n∑
i=1

(yi − xT
i w)2 + α

p∑
j=1

|wi |

▶ The lasso penalty involves the absolute value function, which is
not strictly differentiable at its minimum
▶ This leads to weight estimates of exactly zero being optimal in

less important dimensions
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Lasso

▶ To better understand why the lasso penalty promotes sparse
weight estimates, we can view minimizing the lasso cost
function as a constrained optimization problem
▶ That is, the lasso’s estimate of w minimizes 1

n
∑n

i=1(yi − xT
i w)2

subject to the constraint
∑p

j=1 |wj | < c where c describes a
fixed amount of penalization (a function of α)

▶ For comparison, the ridge estimate is similar but with the
constraint

∑p
j=1 w2

j < c
▶ The next slide provides a geometric illustration of why the lasso

constraint promotes sparsity, but the ridge constraint does not
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Lasso vs. Ridge

In two dimensions, weight estimates satisfying
∑p

j=1 |wj | < c exist
within a diamond, while those satisfying

∑p
j=1 w2

j < c exist within
an ellipse. The former is likely to intersect contours of the squared
error cost function at a corner (a weight estimate of exactly zero).
image credit: https://www.researchgate.net/figure/Plot-demonstrating-the-Sparsity-caused-by-the-LASSO-Penalty-
The-plot-shows-the_fig1_317357840
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Lasso

For pollution example, lasso achieves a minimum cross-validated
mean-squared error of around 1570, while ridge regression’s
minimum error (shown in an earlier slide) is around 1650 for these
data.
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Ridge Regression and Multicollinearity

In the presence of multicollinearity, lasso favors a single
representative, while ridge will split the weight estimates in a more
balanced manner:
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Estimates found using ridge regularization can be more generalizable
to new data for this reason.

16 / 17



Final Remarks on Regularization

▶ The lasso and ridge penalties can be used for the regularization
of nearly any estimator
▶ In general, regularization is an effect means of calibrating highly

flexible/complex models so that they do not overfit the training
data

▶ Most advanced machine learning models involve some form of
regularization
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