Linear Models for Regression Tasks

Ryan Miller

Outline

- 1. Basic review of linear regression
- 2. Parameters and optimization via gradient descent

Linear Regression

Linear regression is a supervised learning approach that assumes the dependence of a numeric outcome on a set of predictors is linear:

$$Y = w_o + w_1 X_1 + w_2 X_2 + \ldots + w_p X_p + \epsilon$$

Using matrix notation:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$$

- ▶ In statistics, the vector of weights, \mathbf{w} , are called the slopes (with with w_0 being the intercept)
 - In machine learning, the intercept w_0 , is often called the *bias* (or the *y-axis offset*)

Parameters and Cost Functions

For linear regression, \mathbf{w} , is estimated from the data. This is done using a *cost function*:

$$Cost = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

This function measures how close the model's predictions are to their corresponding observed values. In matrix notation:

$$Cost = \frac{1}{n}(\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})^{T}(\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

Optimizing the Weights

- ► The optimal set of weights are those that minimize the cost function
 - As you might expect, we can use calculus to help us perform this minimization
- Before jumping in, let's first do some algebraic rearrangement:

$$Cost = \frac{1}{n} (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})^T (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

$$= \frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2\mathbf{y}^T \mathbf{X}\hat{\mathbf{w}} + (\mathbf{X}\hat{\mathbf{w}})^T \mathbf{X}\hat{\mathbf{w}})$$

$$= \frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2\mathbf{y}^T \mathbf{X}\hat{\mathbf{w}} + \hat{\mathbf{w}}^T \mathbf{X}^T \mathbf{X}\hat{\mathbf{w}})$$

Optimizing the Weights

- In multivariate calculus, the **gradient** is the vector of partial derivatives with respect to each unknown variable in a function
 - ► For linear regression, these unknowns are the model's weights (coefficients)
- While it might not be immediately obvious, we can solve for a closed-form minimizer of our cost function (the least squares solution)

$$\hat{\mathbf{w}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

For educational purposes, we will ignore this closed-form solution and pursue alternative methods for estimating an optimal set of weights

Gradient Descent

- ► A derivative describes the slope of a function at a particular location, so we can use the gradient to gradually move towards the minimum of any (convex) cost function
 - ► The **gradient descent algorithm** suggests we can find the set of parameters that minimize our cost function using sequential updates:

$$\hat{\mathbf{w}}^{(j)} = \hat{\mathbf{w}}^{(j-1)} - \alpha \tfrac{\partial \mathsf{Cost}}{\partial \mathbf{w}} \big(\hat{\mathbf{w}}^{(j-1)} \big)$$

- ightharpoonup lpha is a tuning parameter that controls the *learning rate*, or how quickly to update the weight vector at each iteration
 - lacktriangle A small lpha requires many iterations for the algorithm to converge
 - \blacktriangleright A large α can overshoot the minimum, potentially causing similar convergence issues

Some Math

Recall that we can express the linear regression cost function as:

$$Cost = \frac{1}{n} \mathbf{y}^T \mathbf{y} + \frac{1}{n} (-2 \mathbf{y}^T \mathbf{X} \hat{\mathbf{w}} + \hat{\mathbf{w}}^T \mathbf{X}^T \mathbf{X} \hat{\mathbf{w}})$$

Thus, the gradient is:

$$Gradient = \frac{-2}{n} \mathbf{X}^T (\mathbf{y} - \mathbf{X}\hat{\mathbf{w}})$$

And our gradient descent updates look like:

$$\hat{\mathbf{w}}^{(j)} = \hat{\mathbf{w}}^{(j-1)} + \frac{2}{n} \mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \hat{\mathbf{w}}^{(j-1)})$$

Illustration

➤ To illustrate gradient descent, let's look at a very simple special case of linear regression involving no bias term (intercept) and a single weight:

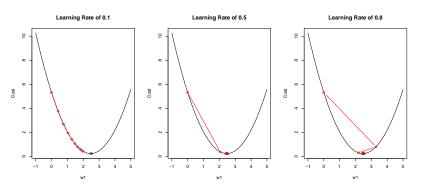
$$Y = 2.5X_1 + \epsilon$$

► For this model, the cost function looks like:

$$Cost = \frac{1}{n} (\mathbf{y} - \mathbf{x}_1^T \hat{w}_1)^T (\mathbf{y} - \mathbf{x}_1^T \hat{w}_1)$$

Learning Rates

The graphs below illustrate 10 iterations (epochs) of gradient descent for our simple, one-parameter regression example (starting at $w_1^{(0)} = 0$):



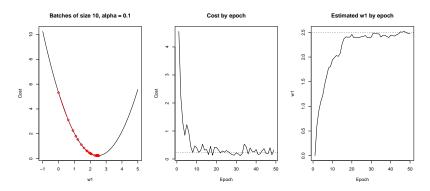
Generally, gradient descent algorithms are programmed to end when the estimated parameters change by no more than an acceptable tolerance (a predetermined small constant)

Stochastic Gradient Descent

- For our simple example, computing the gradient at each epoch required two vector-product calculations: $\mathbf{y}^T \mathbf{x}_1$ and $\mathbf{x}_1^T \mathbf{x}_1$
 - ► Fortunately, these could be computed ahead of time (rather than at each iteration) and the algorithm is extremely computationally efficient
- ► For many other models, the parameter vector is involved in vector-product calculations within the gradient, so these calculations must be redone at every epoch
 - ▶ In big-data settings, this computational challenge has led to the popularity of stochastic gradient descent

Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as gradient descent (updating parameters using the gradient to improve the cost function) but it does so using a subset of training data (or even just one data-point) at each epoch:



Stochastic Gradient Descent

Even using *only one* data-point each iteration, stochastic gradient descent converges to the optimal value of w_1 (on average):



- ► This can be a huge computational benefit in big-data settings for models with complex gradients
- An interesting additional benefit is that the algorithm's "noisy" behavior can help it avoid local minima if the cost function is not convex

Conclusion

This presentation briefly introduced *linear regression*, a modeling framework I'm assuming you're already familiar with:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$$

Compared versus k-nearest neighbors:

- Linear regression involves parameters that must be learned from the data
 - Gradient descent (or stochastic gradient descent) are methods for learning such parameters
- ► *k*-nearest neighbors is "lazy", as its only "learning" comes from storing the training data for later use
 - ► In contrast, linear regression only requires the learned weights to make predictions on new data