
Linear Models for Regression Tasks

Ryan Miller

1 / 14



Outline

1. Basic review of linear regression
2. Parameters and optimization via gradient descent

2 / 14



Linear Regression

Linear regression is a supervised learning approach that assumes the
dependence of a numeric outcome on a set of predictors is linear:

Y = wo + w1X1 + w2X2 + . . . + wpXp + ϵ

Using matrix notation:
y = Xw + ϵ

▶ In statistics, the vector of weights, w, are called the slopes
(with with w0 being the intercept)
▶ In machine learning, the intercept w0, is often called the bias

(or the y-axis offset)

3 / 14



Parameters and Cost Functions

For linear regression, w, is estimated from the data. This is done
using a cost function:

Cost = 1
n

n∑
i=1

(yi − ŷi)2

This function measures how close the model’s predictions are to
their corresponding observed values. In matrix notation:

Cost = 1
n (y − Xŵ)T (y − Xŵ)

4 / 14



Optimizing the Weights

▶ The optimal set of weights are those that minimize the cost
function
▶ As you might expect, we can use calculus to help us perform

this minimization
▶ Before jumping in, let’s first do some algebraic rearrangement:

Cost = 1
n (y − Xŵ)T (y − Xŵ)

= 1
nyT y + 1

n (−2yT Xŵ + (Xŵ)T Xŵ)
= 1

nyT y + 1
n (−2yT Xŵ + ŵT XT Xŵ)

5 / 14



Optimizing the Weights

▶ In multivariate calculus, the gradient is the vector of partial
derivatives with respect to each unknown variable in a function
▶ For linear regression, these unknowns are the model’s weights

(coefficients)

▶ While it might not be immediately obvious, we can solve for a
closed-form minimizer of our cost function (the least squares
solution)

ŵ = (XT X)−1XT y

▶ For educational purposes, we will ignore this closed-form
solution and pursue alternative methods for estimating an
optimal set of weights

6 / 14



Gradient Descent

▶ A derivative describes the slope of a function at a particular
location, so we can use the gradient to gradually move towards
the minimum of any (convex) cost function
▶ The gradient descent algorithm suggests we can find the set

of parameters that minimize our cost function using sequential
updates:

ŵ(j) = ŵ(j−1) − α ∂Cost
∂w

(
ŵ(j−1))

▶ α is a tuning parameter that controls the learning rate, or how
quickly to update the weight vector at each iteration
▶ A small α requires many iterations for the algorithm to converge
▶ A large α can overshoot the minimum, potentially causing

similar convergence issues

7 / 14



Some Math

Recall that we can express the linear regression cost function as:

Cost = 1
nyT y + 1

n (−2yT Xŵ + ŵT XT Xŵ)

Thus, the gradient is:

Gradient = −2
n XT (y − Xŵ)

And our gradient descent updates look like:

ŵ(j) = ŵ(j−1) + 2
nXT (y − Xŵ(j−1))

8 / 14



Illustration

▶ To illustrate gradient descent, let’s look at a very simple special
case of linear regression involving no bias term (intercept) and
a single weight:

Y = 2.5X1 + ϵ

▶ For this model, the cost function looks like:

Cost = 1
n (y − xT

1 ŵ1)T (y − xT
1 ŵ1)

9 / 14



Learning Rates
The graphs below illustrate 10 iterations (epochs) of gradient
descent for our simple, one-parameter regression example (starting
at w (0)

1 = 0):

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.1

w1

C
os

t

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.5

w1

C
os

t

−1 0 1 2 3 4 5

0
2

4
6

8
10

Learning Rate of 0.8

w1

C
os

t
Generally, gradient descent algorithms are programmed to end when
the estimated parameters change by no more than an acceptable
tolerance (a predetermined small constant) 10 / 14



Stochastic Gradient Descent

▶ For our simple example, computing the gradient at each epoch
required two vector-product calculations: yT x1 and xT

1 x1
▶ Fortunately, these could be computed ahead of time (rather

than at each iteration) and the algorithm is extremely
computationally efficient

▶ For many other models, the parameter vector is involved in
vector-product calculations within the gradient, so these
calculations must be redone at every epoch
▶ In big-data settings, this computational challenge has led to the

popularity of stochastic gradient descent

11 / 14



Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as gradient
descent (updating parameters using the gradient to improve the
cost function) but it does so using a subset of training data (or even
just one data-point) at each epoch:

−1 0 1 2 3 4 5

0
2

4
6

8
10

Batches of size 10, alpha = 0.1

w1

C
os

t

0 10 20 30 40 50

0
1

2
3

4

Cost by epoch

Epoch

C
os

t

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Estimated w1 by epoch

Epoch
w

1

12 / 14



Stochastic Gradient Descent
Even using only one data-point each iteration, stochastic gradient
descent converges to the optimal value of w1 (on average):

−1 0 1 2 3 4 5

0
2

4
6

8
10

Only one, alpha = 0.1

w1

C
os

t

0 10 20 30 40 50 60

0
1

2
3

4
5

6

Cost by epoch

Epoch

C
os

t

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Estimated w1 by epoch

Epoch

w
1

▶ This can be a huge computational benefit in big-data settings
for models with complex gradients

▶ An interesting additional benefit is that the algorithm’s “noisy”
behavior can help it avoid local minima if the cost function is
not convex 13 / 14



Conclusion

This presentation briefly introduced linear regression, a modeling
framework I’m assuming you’re already familiar with:

y = Xw + ϵ

Compared versus k-nearest neighbors:

▶ Linear regression involves parameters that must be learned
from the data
▶ Gradient descent (or stochastic gradient descent) are methods

for learning such parameters
▶ k-nearest neighbors is “lazy”, as its only “learning” comes from

storing the training data for later use
▶ In contrast, linear regression only requires the learned weights to

make predictions on new data

14 / 14


