Linear Models for Regression Tasks

Ryan Miller

1/14



Outline

1. Basic review of linear regression
2. Parameters and optimization via gradient descent

2/14



Linear Regression

Linear regression is a supervised learning approach that assumes the
dependence of a numeric outcome on a set of predictors is linear:

Y:WO+W1X1+W2X2+...+Wpo—|-€

Using matrix notation:
y=Xw+e¢

P In statistics, the vector of weights, w, are called the slopes
(with with wy being the intercept)
» In machine learning, the intercept wy, is often called the bias
(or the y-axis offset)

3/14



Parameters and Cost Functions

For linear regression, w, is estimated from the data. This is done
using a cost function:

n
Cost = 1> (vi— 9i)?

i=1

This function measures how close the model's predictions are to
their corresponding observed values. In matrix notation:

Cost = L(y — Xw) " (y — Xv)

4/14



Optimizing the Weights

» The optimal set of weights are those that minimize the cost

function
» As you might expect, we can use calculus to help us perform
this minimization
» Before jumping in, let’s first do some algebraic rearrangement:

Cost = L(y — Xw) " (y — Xv)
= 2yTy+ L(—2y " XW + (X#) T XW)
= 1yTy 4+ 12y TXW + W XTXW)

5/14



Optimizing the Weights

» In multivariate calculus, the gradient is the vector of partial
derivatives with respect to each unknown variable in a function

» For linear regression, these unknowns are the model's weights
(coefficients)

» While it might not be immediately obvious, we can solve for a
closed-form minimizer of our cost function (the least squares

solution)
w=(XTX)"1xTy

» For educational purposes, we will ignore this closed-form

solution and pursue alternative methods for estimating an
optimal set of weights

6/14



Gradient Descent

» A derivative describes the slope of a function at a particular
location, so we can use the gradient to gradually move towards
the minimum of any (convex) cost function

» The gradient descent algorithm suggests we can find the set
of parameters that minimize our cost function using sequential

updates:
w) = wi-1 _ Oéag,fft (W(j—l))

P> « is a tuning parameter that controls the learning rate, or how
quickly to update the weight vector at each iteration
> A small « requires many iterations for the algorithm to converge
» A large a can overshoot the minimum, potentially causing
similar convergence issues

7/14



Some Math

Recall that we can express the linear regression cost function as:

_ 1,7y 1 Tywr 1w TXT X
Cost = =y 'y + +(=2y' XW +w' X' Xw)

Thus, the gradient is:
Gradient = %XT(y — Xw)
And our gradient descent updates look like:

wl) = wU-1) 4 %XT(y — Xwl—1)

8/14



[[lustration

P To illustrate gradient descent, let's look at a very simple special
case of linear regression involving no bias term (intercept) and

a single weight:
Y = 2.5)(1 + €
» For this model, the cost function looks like:

Cost = %(y — xlTnfvl)T(y — xlTW1)

9/14



Learning Rates

The graphs below illustrate 10 iterations (epochs) of gradient
descent for our simple, one-parameter regression example (starting

at Wl(O) =0):

Learning Rate of 0.1 Learning Rate of 0.5 Learning Rate of 0.8

Generally, gradient descent algorithms are programmed to end when
the estimated parameters change by no more than an acceptable

tolerance (a predetermined small constant) 10/14



Stochastic Gradient Descent

» For our simple example, computing the gradient at each epoch
required two vector-product calculations: y’x; and xi’—xl
» Fortunately, these could be computed ahead of time (rather
than at each iteration) and the algorithm is extremely
computationally efficient
» For many other models, the parameter vector is involved in
vector-product calculations within the gradient, so these
calculations must be redone at every epoch
» In big-data settings, this computational challenge has led to the
popularity of stochastic gradient descent

11/14



Stochastic Gradient Descent

Stochastic Gradient Descent uses the same framework as gradient
descent (updating parameters using the gradient to improve the
cost function) but it does so using a subset of training data (or even
just one data-point) at each epoch:

Batches of size 10, alpha = 0.1 Cost by epoch Estimated w1 by epoch

Cost
w

12/14



Stochastic Gradient Descent

Even using only one data-point each iteration, stochastic gradient
descent converges to the optimal value of w; (on average):

Only one, alpha =0.1 Cost by epoch Estimated w1 by epoch

» This can be a huge computational benefit in big-data settings
for models with complex gradients

» An interesting additional benefit is that the algorithm’s “noisy”
behavior can help it avoid local minima if the cost function is

not convex 13/14



Conclusion

This presentation briefly introduced linear regression, a modeling
framework I'm assuming you're already familiar with:

y=Xw+e¢€

Compared versus k-nearest neighbors:

P Linear regression involves parameters that must be learned
from the data
» Gradient descent (or stochastic gradient descent) are methods
for learning such parameters
> k-nearest neighbors is “lazy”, as its only “learning” comes from
storing the training data for later use
» In contrast, linear regression only requires the learned weights to
make predictions on new data

14 /14



