
k-Nearest Neighbors

Ryan Miller

1 / 20

Outline

1. Introduction to k-nearest neighbors
2. Measuring distance
3. Making predictions
4. Standardization, scaling, and normalization

2 / 20

Example Revisited

Last week we introduced the following toy example:

−2 0 2 4 6 8 10 12

0
2

4
6

8
10

x1

x2

healthy
unhealthy

Our goal was to learn rules involving x1 and x2 that can accurately
classify a new observation as healthy or unhealthy.

3 / 20

k-nearest Neighbors

A simple rule is to classify each new data-point using its nearest
neighbor, or the observation closest to it’s x2 and x1 coordinates:

4 / 20

k-nearest Neighbors
A new observation at {x1 = 8, x2 = 4} (purple) is classified as
“healthy”, while another new observation at {x1 = 8, x2 = 8} (blue)
is classified as “unhealthy”:

5 / 20

Minkowski distance

To implement this approach, we need to define how to determine
the nearest neighbor:

da,b =
(K∑

j=1
|xa,j − xb,j |p

)1/p

▶ Minkowski distance, da,b, measures the distance between
data-points a and b
▶ The formula sums pairwise coordinate differences across K

dimensions
▶ The parameter p is chosen by the analyst

6 / 20

Popular distance measures

Two of the most popular choices are p = 2 and p = 1:

deuclidean =

√√√√√ K∑
j=1

(xa,j − xb,j)2

dmanhattan =
K∑

j=1
|xa,j − xb,j |

When might these measures lead to different neighbors?

7 / 20

Popular distance measures

▶ Differences in xa,j − xb,j increase Euclidean distance
quadratically, but increase Manhattan distance linearly
▶ This means large differences are further magnified by Euclidean

distance

8 / 20

Distance and the curse of dimensionality

The curse of dimensionality describes a multitude of problems that
arise when working with many variables.

It’s relatively easy to trap a rat inside a pipe (which can
move in 1-dimension). It’s harder to trap a dog running in a
field (which can move in 2-dimensions). It’s even harder to
trap a bird flying in a field (which moves in 3-dimensions).
It’s impossible to trap a ghost. . .

What problems might arise when using Euclidean distance to find
neighbors in a high-dimensional dataset?
Analogy credit: https://stats.stackexchange.com/questions/169156/explain-curse-of-dimensionality-to-a-child

9 / 20

https://stats.stackexchange.com/questions/169156/explain-curse-of-dimensionality-to-a-child

k-nearest Neighbors

▶ In our earlier examples, we classified new observations using
the single nearest neighbor - a high variance procedure
▶ We can decrease variance (at the expense of introducing

additional bias) by using multiple neighbors
▶ The k-nearest neighbors algorithm aggregates the outcomes of

the k nearest data-points to generate a prediction for a new
observation

10 / 20

k-nearest Neighbors

For a classification task, each of the k-nearest data-points
contributes to the predicted class:

11 / 20

k-nearest Neighbors

There are two schemes by which neighbors can contribute to the
predicted class:

1. Uniform weighting - the predicted probability of each class
equals the proportion of neighbors belonging to that class.

2. Distance weighting - neighbors that are weighted by the inverse
of their distance, allowing closer data-points to contribute more
to the predicted class.

12 / 20

k-nearest Neighbors
Under uniform weighting, we estimate P(blue = healthy) = 4/5, but
under distance weighting we’d estimate P(blue = healthy) > 4/5
since the unhealthy neighbor is also the furthest

13 / 20

Scaling and standardization

▶ In our simple example, x1 and x2 have similar scales (ie:
standard deviations of similar magnitude)
▶ In practice, we’ll frequently encounter features with different

scales
▶ Unless rescaled, features on larger scales will have more

influence on distance calculations than features on smaller scales

14 / 20

Scaling and standardization

A few popular ways to re-scale data are:

1. Standardization:
x̃i = xi −mean(x)

sd(x)

2. Robust scaling:
x̃i = xi −median(x)

IQR(x)

3. Min-Max scaling:

x̃i = xi −min(x)
max(x)−min(x)

4. Max-Absolute scaling:

x̃i = xi
max(|x |)

15 / 20

Scaling and standardization

▶ Standardization forces features to have a mean of zero and a
standard deviation of one
▶ Robust scaling forces features to have a median of zero, and it

can be beneficial for data with large outliers
▶ Min-Max scaling maps each feature onto a [0,1] interval, which

can have computational advantages
▶ Max-Absolute scaling is similar to Min-Max scaling, but the

output range is [-1,1] and it will preserve exact zeros (important
for sparse data)

16 / 20

Scaling vs. Normalization

Scaling changes the range of your data, it does not change the
distributional shape:

Raw Data

F
re

qu
en

cy

0 200 400 600 800

0
20

0
40

0

Standardization

F
re

qu
en

cy
0 2 4 6 8

0
10

0
25

0

Robust

F
re

qu
en

cy

0 2 4 6 8 10

0
10

0
30

0

Min−Max

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

Max−Absolute

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

However, the choice of scaler does matter for k-nearest neighbors,
since dimensions are rescaled individually

17 / 20

Normalization

If you’d like to change the distributional shape of your data to
reduce the effects of skew/outliers, two strategies are:

1. Log-transformation - simply taking the logarithm of each of the
variable’s values

2. Box-Cox transformation - X̃ = Xλ−1
λ for λ ̸= 0 and X > 0

Raw Data

F
re

qu
en

cy

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0

Log

F
re

qu
en

cy

−2 0 2 4 6

0
50

10
0

15
0

Box−Cox (lam = 0.2)

F
re

qu
en

cy

0 5 10

0
20

40
60

80

18 / 20

Numeric Outcomes

So far, this presentation has focused exclusively on classification
tasks, but k-nearest neighbors is easily applied to regression tasks
with the following modifications:

▶ Outcomes are predicted by the arithmetic average (or distance
weighted average) of the numeric outcomes for the identified
neighbors

▶ Model performance is assessed using measures such as root
mean squared error (RMSE) or mean absolute error (MAE)

19 / 20

Putting it all together

To apply the k-nearest neighbors machine learning algorithm the
following decisions must be made:

1. Whether/how the data should be standardized/scaled and/or
normalized

2. How to measure distance
3. The number of neighbors to be used
4. Whether to use uniform or distance weighting

Today’s lab will cover Python implementations of each of these; our
next lab will cover data-driven methods for making these decisions.

20 / 20

