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Introduction

Shown below is Fisher’s famous “iris” data set, which contains petal
and sepal dimensions for examples of three different species of iris:
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How can we use these data to classify new examples of iris?
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Previous approaches

KNN and softmax regression are methods of multi-label
classification. Shown below are the results:
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2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal Length

S
ep

al
 W

id
th

0.25

0.50

0.75

Pr(versicolor)

 

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal Length

S
ep

al
 W

id
th

0.25

0.50

0.75

Pr(virginica)

 

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8
Sepal Length

S
ep

al
 W

id
th

0.00

0.25

0.50

0.75

1.00
Pr(setosa)

kNN Classifier (k = 5)
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Previous approaches

▶ The structure imposed by softmax regression might be overly
biased for this application

▶ While the k-nearest neighbors model likely is too high in
variance

▶ Today we will introduce tree-based models, which still impose
some structure, but have the potential to be less biased than
highly structured models like softmax regression
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Decision trees on the iris data
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Decision Tree Classifier
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Decision trees

Decision trees are trained by recursively partitioning the
p-dimensional space (defined by the explanatory variables) until an
acceptable level of homogeneity or “purity” is achieved within each
partition:

1) Starting with a “parent” node, search for a splitting rule that
maximizes the homogeneity or purity of the “child” nodes

2) Next, considering each node that hasn’t yet been split, find
another splitting rule that maximizes purity

3) Repeat until a stopping criteria has been reached
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Example (first split)
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Example (second split)
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Example (final model)
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Example (full tree)
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Splitting criteria

Decision trees must learn their splits using an objective criteria, the
most common criteria is Gini impurity:

Gini =
k∑

j=1
pj(1 − pj) = 1 −

k∑
j=1

p2
j

▶ For binary classification, this reduces to p1(1 − p1) + p2(1 − p2)
▶ Other splitting criteria exist; however, Gini impurity is the

default in sklearn
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Gini Gain

▶ Gini impurity gives us a measure of the impurity of a tree at
given depth
▶ In our example tree, the Gini impurity of the starting node was

1 − ( 1
3

2 + 1
3

2 + 1
3

2) = 2
3

▶ The best split is the one that produces the largest decrease (or
Gini gain) in the resulting child nodes
▶ In our example, the Gini impurity after the first split was:

0.35 ∗ [1 − (0.872 + 0.122 + 0.022)]+
0.65 ∗ [1 − (0.052 + 0.452 + 0.502)] = 0.434

▶ Thus, the Gini gain was 0.233
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Decision Tree Learning

Building a tree involves iterating between two steps:

1. Finding the optimal split point within each variable
2. Selecting the variable to split on

Even if an exhaustive approach were taken, this can be done fairly
quickly as there are n − 1 possible split points per variable and p
variables

▶ Modern tree solving algorithms are beyond the scope of this
course, but as you might image they do not check every
possible split
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Numeric Outcomes

Applying the decision tree algorithm to data with a numeric
outcome requires the following changes:

▶ Predicted outcomes are the average value in node
▶ Mean squared error is used instead of Gini impurity as a

measure of impurity

Other splitting criteria, such as mean absolute error or Poisson
deviance are available in sklearn
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Stopping the algorithm

Decision trees can be grown until every terminal node is perfectly
pure; however, such trees will be very overfit to the training data.
We can manipulate the bias-variance trade-off in a fitted tree in the
following ways:

1. Restricting the maximum depth of the tree (ie: the number of
sequential rules)

2. Allowing only nodes of sufficient size be eligible for splitting
3. Requiring a certain improvement in purity for a split to occur

Generally, maximum depth is the most important factor to consider
as it directly relates to the complexity of a tree

15 / 19



Examples (bias-variance tradeoff)
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Examples (bias-variance tradeoff)
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Examples (bias-variance tradeoff)
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Examples (bias-variance tradeoff)
Resting metabolism dataset:

100 150 200 250 300

13
00

14
00

15
00

16
00

Max Depth = 1

Weight

R
M

R

100 150 200 250 300

12
00

14
00

16
00

Max Depth = 2

Weight

R
M

R

100 150 200 250 300

10
00

14
00

18
00

Max Depth = 3

Weight

R
M

R

100 150 200 250 300

10
00

14
00

18
00

Max Depth = 4

Weight

R
M

R

19 / 19


