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Introduction

I We’ve previous analyzed the tailgating dataset using
transformations and multiple hypothesis tests:
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Analysis of Variance (ANOVA)

I We previously analyzed these data usng 6 different tests (then
applying the Bonferroni adjustment)

I A more sophisticated approach is a single test of the
hypothesis:

H0 : µND = µTHC = µALC = µMDMA

I This situation, where the explanatory variable is categorical
(with more than two groups) and the outcome variable is
quantitative, is handled using “ANalysis Of VAriance” or
ANOVA
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Partitioning Variability

I The ANOVA works by to splitting the total variability of the
outcome variable into two parts
I The variability between groups
I The variability within groups
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Modeling

I To more formally evaluate “variability”, we need to learn about
statistical modeling

I A model is a simplified characterization of reality
I We might model a child’s adult height as a function of their

age, current height, etc.
I The goal of a model is to explain variability in an outcome

variable
I A model explains variability if its predictions are “better” than

guessing
I The model above involves multiple variables, which can get

pretty complex
I We’ll start by looking at the simplest possible model
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The “Null Model”

I In the tailgating data, the average mean following distance was
ȳ = 41 feet, which is our best estimate of µ the population
mean following distance

I If there are no useful explanatory variables, a reasonable model
for any individual’s following distance is:

yi = µ+ εi

I εi is an unexplainable deviation of that individual from that
mean (we assume these are normally distributed with a mean
of zero)

I This model suggests predictions: ŷi = ȳ
I The expected (predicted) following distance for any individual is

just the overall average
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Summarizing the Null Model

I Under the null model (or any model), each subject deviates
from their prediction by a residual:

ri = ŷi − yi (Definition of a residual)
= ȳ − yi (Residuals for the null model)

I We can summarize how accurate the null model is using a sum
of squares:

SST =
∑

i
r2
i for the null model

I We call this SST (sum of squares total) because it is the
largest possible sum of squares (of any justifiable model)
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Modeling Distance in the Tailgating Data

I The null model makes the same prediction for everyone
I An alternative model suggests different predictions for each

drug group (indexed by k):

Alternative model: yi = µk + εi

suggesting predictions: ŷi = ȳk

I This model can also be summarized using a sum of squares:

SSE =
∑

i
r2
i for the alternative model

I We call this SSE because it summarizes the errors made by the
model we seek to evaluate
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SSE versus SST

I If the alternative model is superior to the null model (ie: the
group means really are different at the population level), SSE
will be much smaller than SST
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SSE versus SST

I If the grouping variable is not associated with Y (ie: the group
means are identical at the population level), SSE will still be
somewhat smaller than SST
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An Important Question

I A lower sum of squares for the alternative model implies the
population level means are different

I But if SSE will always be lower than SST , how should we
decide if we should believe alternative model?

Hint: When considering H0 : p = 0.5 how do you decide whether to
believe p 6= 0.5? Would seeing a sample with p̂ = 0.52 be sufficient?
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Evaluating the Role of Random Chance

I Because SSE will always be less than SST , we should be
asking:
I “Does the grouping variable improve model fit beyond what

might be expected due to random chance?”

I ANOVA answers this question using the test statistic:

F = (SST − SSE )/(d1 − d0)
Std. Error

I d1 and d0 refer to the number of parameters in the model being
considered and the null model, in the tailgating example d0 = 1
(the single overall mean) and d1 = 4 (each group’s mean)

I The F statistic can be interpreted as the standardized drop in
the sum of squares per additional parameter included in the
alternative model
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The F-Distribution

I Under the null hypothesis (ie: presuming the null model is
true), this F -statistic follows an F -distribution that depends
upon two different degrees of freedom (df ) parameters
I The numerator df is d1 − d0
I The denominator df is n − d1

I We can use StatKey to view various F -distribution curves
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The F-Distribution - Practice

I For the data displayed below, assuming the standard error is
2.53, calculate the F statistic comparing an alternative model
the uses 3 group means (A, B, and C) against the null model
(using the overall mean)

I For these data, n = 90, use this to locate your F -statistic on
the appropriate distribution. Explain what the “Right Tail”
area beyond your F -statistic describes.
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The F-Distribution - Solution

1. SSE = 22.3 + 22.9 + 23.1 = 68.3, SST = 69.2, d1 = 3, d0 = 1,
and SE = 2.53; so the F -statistic is given by:
(69.2−68.3)/(3−1)

2.53 = 0.18
2. The area to the right of this statistic is 0.836 on the F(2,87)

distribution, indicating there is an 0.836 chance of seeing data
like ours if the null model were true
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What is the Standard Error?

I We’ve seen that standard errors tend to look like a measure of
variability divided by the sample size

I In the ANOVA setting:

Std. Error = SSE
n − d1

I This is the sum of squares of the alternative model divided by
its degrees of freedom, df = n − d1

I Using this standard error, the F statistic can be expressed:

F = (SST − SSE )/(d1 − d0)
SSE/(n − d1)
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What is the Standard Error?

I Previously we’ve seen that standard errors tend to look like a
measure of variability divided by the sample size

I In this setting:
Std. Error = SSE

n − d1
I This is the sum of squares of the alternative model divided by

its degrees of freedom, df = n − d1
I Using this standard error, the F statistic can be expressed:

F = (SST − SSE )/(d1 − d0)
SSE/(n − d1)
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Connecting the F -test to Variability

I SST is the sum of squares for the null model, this model
predicts each yi using the overall mean ȳ
I SST =

∑
i r2

i where ri = yi − ȳ
I SST describes total variability in y

I SSE is the sum of squares for the alternative model, this model
predicts each yi using a group-specific mean ȳi
I SSE =

∑
i r2

i where ri = yi − ȳi
I SSE describes the variability that remains after accounting for

which group a data points belongs to
I By subtraction, we can determine how much variability is being

explained by the parameters included in the alternative model:

SST = SSE + SSG

I SSG , the sum of squares groups, denotes the amount of
variability explained by using the “group” variable
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Simplifying the F -statistic

I Using SSG , we can express the F -statistic as:

F = SSG/(d1 − d0)
SSE/(n − d1)

I Sums of squares divided by their degrees of freedom are often
called mean squares, they allow for a simpler looking F
statistic:

F = MSG
MSE

I MSG is the mean square of groups, MSE is the mean square of
error
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The ANOVA Table

I Calculating sums of squares and mean squares by hand is
extremely tedious and something we won’t spend time doing in
this class

I However, you will be expected to understand a common piece
of software output known as the ANOVA table

I The general form of these tables is shown below:

Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" d1 − d0 SSG MSG MSG/MSE Use Fd1−d0,n−d1

Error n − d1 SSE MSE
Total n − d0 SST

I In the typical ANOVA application:
I d0 = 1, the null model has one parameter, a single overall mean
I d1 = k, the alternative model has k parameters, a different

mean for each group
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The ANOVA Table - Example #1

With your group, complete the following ANOVA table (assuming
this is a typical ANOVA test where d0 = 1):

Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" 4 200 ? ? ?
Error ? 440 ?
Total 59 ?

Additionally, roughly a sketch of what a set of boxplots for these
data (broken down by group) might look like (disregarding the units)
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The ANOVA Table - Example #1 (solution)

In this example d1 = k = 5 and n = 60, so:

Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" 4 200 50 6.25 0.0003
Error 55 440 8
Total 59 640

I The p-value is found using the right-tail area beyond 6.25 of an
F distribution with (4, 55) degrees of freedom

I The corresponding boxplots should show high variability
between groups and low variability within groups
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ANOVA - Example #2

With your group, analyze the Tailgating Data (using log(distance)
or LD as your outcome variable) in Minitab with ANOVA (Stat ->
ANOVA -> One-Way), be sure to report:

1. Your null and alternative hypotheses
2. Your test statistic
3. Your p-value and a one sentence conclusion
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ANOVA - Example #2 (solution)

1. H0 : µND = µTHC = µALC = µMDMA
2. F = 2.23
3. The p-value here is 0.088. There is borderline evidence that

drug use is predictive of following distance, it appears that the
MDMA group is most different, with shorter following distances
(on the log-scale)
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Inference for Means after ANOVA

I The results of an ANOVA test only tell us whether a difference
in group means exists, not which groups are different

I After a statistically significant ANOVA test we should further
investigate which groups differ

I In Minitab this is done using Tukey’s honest significant
difference (HSD) test (sometimes called Tukey’s range test)
I Tukey’s HSD naturally controls the type I error rate for all

possible pairwise comparisons (so we avoid the problem of doing
multiple tests)

I Our textbook provides an alternate set of formulas for post-hoc
testing, you won’t be held responsible for those formulas
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Inference for Means after ANOVA - Example

Practice: With your group, conduct a follow up analysis of the
Tailgating Data using ANOVA and Tukey’s HSD (click
“comparisons” in the ANOVA menu) and answer the following
questions:

1. Which groups are most different?
2. Which groups are least different?
3. Construct and interpret the confidence interval relating the

“NODRUG” and “MDMA” groups (remember the variable “LD”
is on the log-scale)
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Inference for Means after ANOVA - Example (solution)

1. The NODRUG and MDMA groups are the most different, but
the difference just misses statistical significance (p = 0.055)

2. The THC and ALC groups are the least different
3. On the log-scale the interval is (-0.005, 0.705), after

exponentiation we get: (0.995, 2.024).

We conclude that the mean following distance of the NODRUG
group is between 0.5% shorter and 102.4% greater than the mean
following distance of the MDMA group.
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Some Loose Ends

ANOVA compares:

The null model: yi = µ+ εi suggesting predictions: ŷi = ȳ
The alternative model: yi = µk + εi suggesting predictions: ŷi = ȳk

I We haven’t talked much about the unexplainable deviations
(the εi ’s)
I ANOVA was derived under the assumption that they are

normally distributed with a mean of zero

I We’ll never actually know εi , but we can estimate it via ri
I This suggests we should check the distribution of the residuals

to assess whether the ANOVA test was valid
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Normality of Y?

I ANOVA doesn’t require normality of the outcome variable
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Non-Normal Residuals?

I If the residuals are not normally distributed some options
include:
I Applying a log-transformation to the outcome variable
I Using a randomization testing approach to ANOVA

(implemented in StatKey)
I Reporting the ANOVA results with caution
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ANOVA and the t-test

I The models compared by ANOVA correspond to the following
hypotheses:

H0 : µ1 = µ2 = . . . = µk , HA : At least one mean differs

I When, k = 2 these are the same hypotheses as the two-sample
t-test

I Some places (including our textbook) choose to describe
ANOVA as an extension of the t-test (rather than a modeling
approach)
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Conclusion

These notes cover Ch 8 of the textbook. Right now, you should. . .

1. Know the situations where ANOVA can be used
2. Understand the concepts of “Null” and “Alternative” Models
3. Know how to fill out an incomplete ANOVA table
4. Understand how to interpret an ANOVA table
5. Conduct appropriate follow-up analyses after ANOVA

I encourage you to read Ch 8 of the book and its examples.
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