Confidence Intervals

Ryan Miller

Interval Estimates

Lately we've been exploring the uncertainty of the estimates we get from a sample:

- Based upon the sampling distribution of \bar{x}, we saw that μ is the most likely value of \bar{x} for a single sample
- This means \bar{x} from our sample is our best guess at the population parameter μ
- While μ is the most likely value of \bar{x}, very often the sample average isn't exactly μ
- So our most likely value is almost always wrong. . .
- An alternative is to estimate μ using an interval based upon \bar{x}

Interval Estimates

Generally speaking, an interval estimate of a population parameter has the form:

Sample Statistic \pm Margin of Error

Ideally, we'd like the margin of error to carry some quantifiable claim of precision (ie: 80% of the time these intervals will contain the true population parameter)

Trivia Activity - Directions

Today we will focus on interval estimation. For an interval estimate to be meaningful, it should provide a pre-specified level of accuracy. To illustrate how important this is, we'll use trivia questions!

- In this activity, l'll ask 16 trivia questions with numeric answers
- Your goal is provide an interval that correctly captures the truth 80% of the time
- To prevent cheating, only 15 randomly chosen questions will count
- If $12 / 15(80 \%)$ of your intervals capture the truth you'll win a prize
- You should think carefully about the 80% accuracy target when forming your intervals

Trivia Activity

Question 1:
How heavy, in lbs or kg , was the world's largest watermelon?

Question 2:
What is the total population of Italy (in millions, 2018)?

Question 3:
What is the total value of all of the world's bitcoin (in billions, as of Jan 2020)?

Question 4:
How many students applied to Grinnell College in 2018?

Trivia Activity

Question 5:
What is the lowest temperature ever recorded in Grinnell lowa (in F or C)?

Question 6:
How many different people have run the 100 m dash under 10 seconds?

Question 7:
What percentage of the US population is over 65 years-old?

Question 8:
How many chromosomes does a dog have?

Trivia Activity

Question 9:
What is the average transaction at Walmart (US dollars, 2018)?

Question 10:
How many states were part of the United States in the year 1900?

Question 11:
How many "days" are in a year for the planet Mars (ie: its orbital period in Earth days)?

Question 12:
How many US presidents have died on the 4th of July?

Trivia Activity

Question 13:
As of 2019, how many English Wikipedia articles are there (in millions)?

Question 14:
How many bones are there in a human foot?

Question 15:
How many letters are in the longest word that is typed using only the left hand? (assuming a standard QWERTY keyboard)

Question 16:
How much does a gallon of water (at room temp) weigh, in lbs or kg?

Trivia Answers

Q1: 350.5 lbs or 159 kg
Q2: 60.48 million
Q3: 156.7 billion
Q4: 7,349 students (source)
Q5: -35 F / -37 C (source)
Q6: 523 people
Q7: 14.9 percent
Q8: 78 chromosomes (source)

Trivia Answers

Q9: $\$ 44.39$
Q10: 45 states (source)
Q11: 687 days (source)
Q12: 3 presidents (source)
Q13: 5.91 million articles (source)
Q14: 26 bones (source)
Q15: 12 letters "stewardesses" (source)
Q16: 8.3 lbs or 3.8 kg

Interval Estimation

- Point estimates are almost always wrong
- Including a margin of error allows for a more reasonable description of the truth, but coming up with a meaningful margin of error is difficult
- In the trivia activity, we saw just how difficult it was to come up with a margin of error that has an 80% success rate
- In our defense, we almost certainly could have come up with a better estimation procedure if we had been using data

Confidence Intervals

A confidence interval is an interval estimate computed from sample data using a procedure that is expected to capture the population parameter with a long-run success rate known as the confidence level.

- Any single confidence interval either will contain, or won't contain, the population parameter
- It's the method behind confidence intervals are created that makes them special
- The confidence level doesn't describe how we feel about any particular interval, instead describes the procedure used to create that interval

Confidence Intervals

1. For a symmetric, bell-shaped distribution, roughly 95% of values fall within 2 standard deviations of the center. As we've discussed, many sampling distributions have this shape
2. Considering only a single sample, it's most likely that sample's estimate is the center of the sampling distribution.

These suggest a method for constructing 95% confidence intervals:

$$
\text { Sample Statistic } \pm 2 * \text { SE }
$$

But does this actually work? (ie: do intervals calculated this way really contain the population parameter 95% of the time?)

Confidence Interval Coverage

Let's explore this procedure using survey data from Fall 2018 Sta-209 students. Suppose are interested in estimating the proportion of students who took the class for fun (p). For random samples of size $n=20$, the sampling distribution of \hat{p} looks like:

Sampling Distribution of \hat{p}

Confidence Interval Coverage

The standard error of \hat{p} is 0.088 . The first random sample had a sample proportion of $\hat{p}=0.35$, thus the 95% confidence interval for p using this sample is:

$$
0.35 \pm 2 * 0.088=(0.174,0.526)
$$

The true proportion of students taking STA-209 for fun (In Fall 2018) was 0.415 , so this particular interval does indeed capture the population parameter p

Confidence Interval Coverage

Now let's repeat the calculation for many different random samples:

Sample	Estimate	Calculation	$95 \% \mathrm{Cl}$
1	0.35	$0.35+/-2^{*} 0.88$	$(0.174,0.526)$
2	0.25	$0.25+/-2^{*} 0.88$	$(0.074,0.426)$
3	0.4	$0.4+/-2^{*} 0.88$	$(0.224,0.576)$
4	0.55	$0.55+/-2^{*} 0.88$	$(0.374,0.726)$
5	0.35	$0.35+/-2^{*} 0.88$	$(0.174,0.526)$
6	0.25	$0.25+/-2^{*} 0.88$	$(0.074,0.426)$

Confidence Interval Coverage

96 of 100 intervals contain p, so the procedure seems to work!

Confidence Interval Interpretation

- In any real application we only have one sample, resulting in a single confidence interval for the population parameter
- This interval either contains the parameter or it doesn't (ie: there's a 100% or 0% chance the population parameter is in this particular interval)
- For this reason we avoid saying things like: "There is a 95% chance that μ is between A and B "
- Instead, we speak in terms of our confidence: "We are 95% confident the interval (A, B) contains the true value of μ "
- Remember, we are confident in the procedure used to make the interval, not necessarily this exact interval

Confidence Interval Nuances

- There's nothing special about the 95% confidence level, but it has become convention in the scientific literature
- Theoretically this suggests that we should be able to trust scientific conclusions 95% of the time, at least when it comes to estimation, right?
- Unfortunately that isn't true, the actual percentage is lower due to factors like sampling bias, flawed experimental design, and incorrect assumptions
- These factors are not accounted for in the confidence level
- Practically speaking, you should see a confidence interval as a range of plausible values, but recognize that the degree of plausibility assumes the study design is perfect (which seldom is true)

Confidence Intervals from a Single Sample?

- So far we've glossed over how to find the standard error (SE)
- We know it's the standard deviation of the sampling distribution, but why isn't that helpful?
- In reality, you only can collect a single sample, not the entire sampling distribution
- For much of the remainder of the course we'll explore different ways of reconstructing the sampling distribution (or its counterpart, the null distribution)
- We'll begin with a simple approach that is seemingly too good to be true:
- Repeatedly draw new samples from the original sample and act like they're independent sample's from the population
- This is called bootstrapping, and it will be introduced in the next lab

Conclusion

Right now you should. . .

1. Understand advantages of interval estimates
2. Be able to calculate a confidence interval when given a sample statistic and its standard error
3. Correctly interpret a confidence interval and recognize common misconceptions
4. Understand the differences between "margin of error", "standard error", and "standard deviation"

These notes cover Section 3.2 the textbook, I encourage you to read through the section and its examples

