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Clofibrate

I In 1980, the New England Journal of Medicine published
results from a randomized, placebo-controlled, double-blind
experiment involving the drug clofibrate, which reduces blood
cholesterol levels.

I Of the subjects randomly assigned to take clofibrate, adherers
were defined as those who took more than 80% of their
prescribed pills:

Number Deaths
Took at least 80% 708 15%
Took less than 80% 357 25%
Total 1103 20%
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Clofibrate

Is clofibrate effective? We might consider the hypothesis:

H0 : pdeath|adherer − pdeath|nonadherer = 0

Recall we observed:

p̂death|adherer − p̂death|nonadherer = 106/708 − 89/357 = −0.10

With your group, use StatKey to evaluate the two-sided hypothesis
that death rates are unequal in those who took/didn’t take
clofibrate.
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Clofibrate

With a p-value of approximately 0.001 (1/1000) we should be
convinced that the observed difference in survival was not due to
random chance. But is the difference due to clofibrate?

Clofibrate Placebo
Number Deaths Number Deaths

Adherers 708 15% 1813 15%
Nonadherers 357 25% 882 28%
Total 1103 20% 2789 21%

Once we consider the experiment’s placebo group, clofibrate no
longer appears to be effective.

4 / 27



Clofibrate

I This experiment should have been analyzed using the
intent-to-treat principle:

p̂death|clofibrate − p̂death|placebo = −0.01

I The corresponding hypothesis test yields an unconvincing
p-value of 0.51
I Using a significance level (evidence threshold) of α = 0.05,

we’d fail to reject the null hypothesis that clofibrate and
placebo are equally effective

I But is it possible that prescribing clofibrate really is better than
prescribing placebo?
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Clofibrate

I Yes, clofibrate could be better (remember a high p-value
doesn’t prove the Null Hypothesis)
I This would imply that our experiment and hypothesis test

resulted in an error
I Put differently, we failed to reject H0 with p ≥ α, but that was

a mistake because H0 is false and should be rejected
I Following this logic, another type of error would be rejecting a

null hypothesis that is actually true
I Any guesses on the exciting names statisticians have given

these two types of errors?

6 / 27



Type I and Type II Errors

I A type I error occurs when the null hypothesis is rejected, but
in reality it is true

I A type II error occurs when the null hypothesis cannot be
rejected, but in reality it is false

H0 is true H0 is false
Don’t Reject H0 Correct Type II Error
Reject H0 Type I Error Correct
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Practice

For each scenario, describe (in words) what a Type I and Type II
error would mean:

1. H0 : Person A is not guilty of the crime vs. HA : Person A is
guilty of the crime

2. H0 : Drug A doesn’t cure disease B vs. HA : Drug A cures
disease B

Additionally, how do you think a data analyst could decrease the
chances of making a Type I error? (Assuming the data have already
been collected)
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Practice (Solution)

1. A type I error would be deciding an innocent person is guilty, a
type II error would be deciding a guilty person is innocent

2. A type I error would be deciding that an ineffective drug is
beneficial, a type II error would be deciding a beneficial drug is
not effective

We could reduce our chances of making a type I error by lowering
our significance threshold.
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Type I Error Control

A major reason for the popularity of hypothesis testing is type I
error control

I Using a significance threshold of α limits the probability of
making a type I error to α

I Imagine 100 different hypothesis tests where the null
hypotheses are all true
I Using α = 0.05 we’d expect 5 type I errors (on average)
I Trivially, how could we guarantee a 0 type I errors?

I Type I error rates are controllable because they depend entirely
on the null distribution (namely the tail-areas defined by α)
I Type II errors are more difficult to assess, they require you to

know the true effect (which you’re typically trying to estimate)
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Power

Rather than fixating on type II error control, statisticians instead
tend to focus on a measure called power:

I Let β denote the probability of making a type II error
I Power is defined as 1 − β, and is the probability of correctly

rejecting a false null hypothesis
I Calculating power requires us to specify an effect size, or what

we think is true in reality
I Power also depends upon sample size and α
I Trivially, How could we guarantee 100% power?
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Power Calculations

I Statisticians frequently use power calculations to help plan
future studies, these calculations address the question:

What samples sizes are needed to achieve a certain proba-
bility of rejecting a false null hypothesis?

I This link is an example of a power calculator for difference in
proportions tests

I If we assume the death rates seen in the clofibrate study (0.20
and 0.21) are true at the population level, sample sizes of
∼ 25000 in each group are needed to have an 80% chance of
rejecting the null hypothesis and detecting this difference!
I If we’re willing to accept a 10% type I error rate, the

requirement drops to ∼ 20000
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Takeaways

I Statisticians use significance thresholds (ie: α) to limit the
probability of making a type I error
I These thresholds control the long-run rate of “false positives” in

scientific experiments

I Type II errors are more complicated, and statisticians usually
focus on power instead
I Power depends upon n, α, and the effect size
I Planning an experiment usually involves calculating the

necessary sample size(s) to achieve reasonable power to detect
a clinically significant effect without compromising type I error
control
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Confidence Intervals vs. Hypothesis Tests

I Both confidence intervals and hypothesis tests are tools used to
evaluate whether random chance is a likely explanation for a
trend observed in a dataset

I As you might expect, you can infer things about one of these
methods from the other
I Consider H0 : µ1 − µ2 = 0
I Suppose the 95% confidence interval estimate for the difference

in means is (3.2, 10.1), do you think the null hypothesis is
plausible? What do you think the p-value might be?
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Confidence Intervals vs. Hypothesis Tests

I The p-value will be less than 0.05 because the 95% confidence
interval doesn’t contain zero (the value specified in the null
hypothesis)

I Hypothesis testing is based upon plausible values when the null
hypothesis is true, while confidence intervals are based upon
plausible values in reality
I The variation in these plausible values depends on the data

itself, it doesn’t depend on the null hypothesis being true
I Many of you noticed this on the previous lab by recognizing the

similarities of bootstrapping and randomization testing for a
single mean

15 / 27



Confidence Intervals vs. Hypothesis Tests - Practice

I Suppose the hypothesis test for a difference in proportions
H0 : p1 − p2 = 0 yields a p-value of 0.16, what do you know
about the 99% confidence interval?
I The 99% confidence interval will contain 0, this is because the

p-value is larger than 0.01

I Suppose the hypothesis test for a difference in means
H0 : µ1 − µ2 = 0 yields a p-value of 0.004, what do you know
about the 99% confidence interval?
I The 99% confidence interval won’t contain 0, this is because

the p-value is less than 0.01
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Hypothesis Test or Confidence Interval?

In many fields journal publications tend to include statements like:

I “Free prostate specific antigen levels were significantly higher in
controls (p = 0.003)”

I “The expected cancer incidence was 1.4 per 100,000 (95% CI:
0.7-2.1)”

I “The rate reduction in the intervention group was 0.9 (CI:
0.86-0.94, p < 0.001)”

So, should you report the p-value or a confidence interval? Should
you report both?
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Hypothesis Test or Confidence Interval?

I Hypothesis testing is more appropriate when you are interested
in a specific null value (ie: could p1 − p2 = 0?)

I Confidence intervals are more appropriate when you’re
interested in estimating an effect (ie: what is the cancer
incidence rate for this population?)

I There is no harm in reporting both and letting the reader
decide which is more informative
I Confidence intervals are particularly valuable for non-significant

p-values because the reader can themselves decide if the results
appear to be due a lacking sample size or due to the lack of an
effect
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Drug Use and Tailgating

I This example comes from a study done at the National
Advanced Driving Simulator (NADS), which attempted to link
drug use with risky behavior in other areas (driving)

I In a driving simulator, subjects were told to follow a lead
vehicle that was programmed to vary its speed unpredictably
I As the lead vehicle erratically changed speed, more cautious

drivers follow at a larger distance, while riskier drivers tailgate
the vehicle

I The study’s outcome variable was the average following
distance of each participant

I The study’s explanatory variable was the participant’s drug use
group: Alcohol, MDMA, THC, or no drugs used
I Participants who used multiple drugs were classified according

to the “hardest” drug they used (MDMA > THC > Alcohol)
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Drug Use and Tailgating
After removing a couple of outliers, here’s what the data look like:

ALC MDMA NODRUG THC
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Multiple Testing

In these data there are four different groups we’d like to compare,
requiring six different hypothesis tests.

1. ALC vs NODRUG, p-value = 0.5102
2. ALC vs MDMA, p-value = 0.00417
3. ALC vs THC, p-value = 0.8959
4. THC vs NODRUG, p-value = 0.4782
5. THC vs MDMA, p-value = 0.01383
6. MDMA vs NODRUG, p-value = 0.00216

If we use the results of these 6 tests (comparing vs. α = 0.05), does
our experiment still have a 5% Type I error rate?
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The Bonferroni Adjustment
The Type I error rate for this family of tests is inflated, suppose the
null hypothesis is true for all 6 pairwise tests in the tailgating study
(and the tests are independent); Then, using α = 0.05:

Pr(At least one type I error) = 1 − Pr(No type I errors)
= 1 − (1 − 0.05)6 = 26.5%

This suggests a simple correction to significance threshold:
α∗ = α/h, where h is the number of hypothesis tests being
performed. Then:

Pr(At least one type I error) = 1 − Pr(No type I errors)
= 1 − (1 − 0.05/6)6 ≈ 5%
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The Bonferroni Adjustment

Setting α∗ = α/h is known as the Bonferroni Adjustment. How
many of the six hypotheses can be rejected while still achieving a
family-wise Type I error rate of 5%?

1. ALC vs NODRUG, p-value = 0.5102
2. ALC vs MDMA, p-value = 0.00417
3. ALC vs THC, p-value = 0.8959
4. THC vs NODRUG, p-value = 0.4782
5. THC vs MDMA, p-value = 0.01383
6. MDMA vs NODRUG, p-value = 0.00216

Since α∗ = 0.05/6 = 0.0083, only two of six tests are now
considered “statistically significant”; but we’ve controlled the
family-wise Type I error rate at 5%.
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Bonferroni Adjusted p-values

I Occasionally you’ll see adjusted p-values get reported (rather
than an explanation of how to compare the original p-values to
an adjusted significance threshold)

I For the Bonferroni adjustment this simply entails multiplying
each of the original p-values by h (the number of tests)

I “Bonferroni Adjusted p-values” can then be compared directly
with a significance threshold describing the desired Type I error
rate
I For example, you could compare the adjusted p-values to 0.05

to achieve a 5% family-wise Type I error rate

24 / 27



Practice

A genetic association study tested for differences in gene expression
between two types of leukemia. The study tested 7129 genes.

1. If all 7129 tests were done using α = 0.01, and there are no
genetic differences between these two types of leukemia, how
many “statistically significant” results would you expect?

2. Suppose 783 genes had p-values less than 0.01, do you believe
there is some association between genes and type of leukemia

3. Suppose you wanted to use the Bonferroni adjustment to
ensure a Type I error rate no larger than 5%. What would your
adjusted significance threshold be?

4. Suppose the “most significant” gene had a p-value of 0.000001,
what is its Bonferroni Adjusted p-value?
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Practice - Solution

1. You’d expect 7129 ∗ 0.01 = 71 Type I errors
2. Yes, there were over 10 times (712) more significant results

than expected
3. α∗ = 0.05/7129 = 0.000007
4. The adjusted p-value is 0.000001 ∗ 7129, or p∗ = 0.007
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Conclusion

Right now, you should. . .

1. Understand the errors that can occur when hypothesis testing
2. Understand statistical power and how it relates to hypothesis

testing errors
3. Know the relationship between hypothesis tests and confidence

intervals
4. Understand the problems with multiple testing, and how to use

the Bonferonni adjustment

These notes cover Sections 4.4 - 4.5 of the textbook, I encourage
you to read through those sections and examples
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