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Outliers

I We’ve previously analyzed the tailgating data when learning
about the Bonferroni adjustment

I In that analysis I neglected the fact that these data contain
several large outliers
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https://remiller1450.github.io/data/Tailgating.csv


Practice - Outliers

With your group, load the Tailgating Data into Minitab (the variable
“D” contains each subject’s average following distance), then:

1. Use Minitab to evaluate the difference mean following distances
for the MDMA and THC groups using a two-sample t-test
(Hint: perform the test using summary statistics)

2. Manually delete the outlier in the THC group and repeat the
test

3. How does the p-value change after deleting the outlier?
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Outliers

I With the outlier included the p-value of the t-test is 0.09
I If the outlier is deleted, the p-value is 0.03
I It is tempting to remove the outlier, imagine your team spent

hundreds of hours on this study. . .
I But should the outlier be discarded?

I Selectively discarding data raises major ethical questions
I p-values calculated when data are selectively discarded are at

best questionable and at worst meaningless
I Unfortunately these situations occur regularly and can be

impossible for outsiders discover
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Is it Ever Okay to Remove Outliers?

I Discarding recorded data should be approached with caution,
but sometimes there are valid reasons to remove outliers:
I Recording/measurement errors (a pulse of 0, or a “teen” with

an age of 155)
I Or, in the tailgating study, the outliers could have been

individuals who weren’t taking the study seriously
I In these scenarios, the outliers don’t accurately reflect the

population of interest and should be excluded

I When outliers are real data points, it is better to alter the
analysis approach instead of manipulating the raw data

I Sometimes, outliers lead to the most interesting and important
conclusions in your data analysis
I A famous example involves NASA’s monitoring of the Earth’s

ozone layer
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Ozone, Outliers, and the Nimbus-7

I In the mid 1980’s a large hole in the ozone layer above
Antarctica was discovered, garnering worldwide attention

I Since the early 1970’s, NASA had been monitoring the Earth’s
atmosphere using data collected by the satellite Nimbus-7
I This data collection seemed to have completely missed the

ozone hole! Or did it. . .

I Technology in the 1970s was prone to measurement errors,
leading scientists to rely on data processing programs that
automatically discarded certain unusual observations thought
to be errors

I During the controversy of the 1980’s, scientists revisited the
Nimbus-7 raw data (including what was automatically being
discarded)
I Evidence of the ozone hole existed nearly a decade earlier, but

that data was being automatically excluded!
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How to Analyze Data with Outliers

I As demonstrated in the drug use and tailgating example,
outliers can severely reduce the power of many statistical tests,
so we should do something to address them

I There are two popular approaches to analyzing data with
outliers:
I Transforming the variable of interest so that its distribution is

more normal
I Using a non-parametric test (ie: testing the difference in

medians)
I We’ll first explore the former approach, specifically

log-transformation
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Logarithms

I Statisticians use the term “log” to refer to what most call the
natural logarithm:

log(X ) = T ↔ X = eT

I A key property of logarithms is that differences on the log-scale
correspond to ratios on the original scale after exponentiating:

log(X )− log(Y ) = log(X/Y )

elog(X/Y ) = X/Y
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Logarithms - Example

I For the tailgating study, we can perform a log-transformation
using a Minitab formula creating new columns containing
“log(following distance)”

I For the THC and MDMA groups, the means of this new
variable are 3.54 and 3.28 respectively
I The difference in means on the log-scale is 0.26
I exp(0.26) = 1.30 = mean following distance of THC group is

30% higher than the mean in the MDMA group

I This concept applies to confidence intervals too:
I The 95% CI on the log-scale is (0.05, 0.47), which we can

exponentiate to (1.05, 1.60)
I So we can be 95% confident the mean following distance is

somewhere between 5% and 60% higher for THC users in the
population these data represent
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Logarithms - Additional Details

I On a technical note,
∑

log(xi)/n 6= log(
∑

xi/n); the
exponentiated mean of the log-transformed data is actually the
geometric mean
I So 1.30 (in the last example) was actually the ratio of

geometric means, not the ratio of arithmetic means
I This is a technical detail which I mention for completeness, it is

not an important distinction practically speaking
I the big picture take-away is that analyzing the log-transformed

data allows us to measure relative changes across groups (after
the transformation is undone via exponentiation)
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Example - Applying the Log-transformation

Using the Tailgating Data:

1. Use a Minitab formula to create a new variable: “LogDistance”,
check that it matches the existing variable “LD”

2. Construct the 95% confidence interval for the mean relative
increase in following distance of No Drug and THC users

3. Perform a two-sample t-test using the log-transformed data for
No Drug and THC groups, compare the results with a
two-sample t-test on the untransformed data
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Example - Solution

1. Not shown
2. The 95% CI on the log scale is (-0.151, 0.318), exponentiating

the interval yields (0.86, 1.37) which it’s plausible that the
mean following distance in the “no drug” group could be
anywhere from 14% shorter to 37% longer than the THC group

3. The test statistic on the log scale is 0.71 and the p-value is
0.478, on the original scale the test statistic is 0.39 and the
p-value is 0.70.

The test is much more powerful on the log-transformed data,
though neither test indicates a statistically significant difference in
the average following distance of these two groups.
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Remarks

I There are many transformations that statisticians sometimes
apply to non-normally distributed data
I The log-transformation is popular because it retains

interpretability (we can use exponentiation make relative
comparisons)

I Non-parametric tests are a completely different alternative to
transforming the data
I In the slides that follow I will briefly introduce a couple of

non-parametric analogs to the one-sample and two-sample
t-tests

I You will not be responsible for understanding the details of
these tests, but you should be aware of when they might be
used (and you should consider them for your final project)
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Wilcoxon Signed-Rank test (one-sample test)

I The Wilcoxon Signed-Rank test is a non-parametric analog
to the one-sample t-test (single mean)
I It is most often used to test whether the median difference in a

paired design is zero
I Formally, the test specifies H0 : m = m0, or the median is some

theoretical median
I It proceeds by ranking the data-points (1:N) based upon how

far they are from m0
I Next signs are given to these ranks based upon whether the

data-point was above m0 (+ sign) or below m0 (- sign)
I Under the null hypothesis, the sum of the signed-ranks is

expected to be zero, so we can use this sum to derive a null
distribution and a p-value (something we won’t cover)
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Mann-Whitney U-test (two-sample test)

I The Mann-Whitney U-test is commonly used as a
non-parametric analog to the two-sample t-test (difference in
means)
I It tests whether the location of one distribution is shifted

relative to another
I In doing so it makes no assumptions regarding the shape of the

distributions (they could both be skewed, have outliers, etc.)

Figure 1:

IMG source: https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
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Mann-Whitney U-test (two-sample test)

I Formally, the Mann-Whitney U-test specifies
H0 : dist(X1) = dist(X2) and HA : dist(X ) 6= dist(Y )
I It proceeds by ranking each data-point, regardless of group,

from smallest to largest (1:N)
I These ranks are summed within each group, yielding the

quantities R1 and R2
I R1 and R2, along with n1 and n2 are used to construct the

U-statistic
I An exact test or a z-test can be performed using U (something

we won’t cover)
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Example - Non-parametric Tests in Minitab

1. Using the tailgating data, use a Mann-Whitney U-test to
evaluate the difference in following distances of the No Drug
and THC groups. How do the results of this test compare with
the p-value of the t-test on the log-transformed data (0.48),
and the p-value of the t-test on the un-transformed data
(0.70)?

2. Using the wetsuits data, create a new column “difference” and
then use the Wilcoxon Signed-rank test to evaluate whether
swim velocity when wearing a wetsuit differs from swim velocity
without a wetsuit. How do the results of this test compare with
the p-value of the paired t-test (0.000)?
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Example - Solution

1. The p-value of the Mann-Whitney test is 0.43, a p-value that
is very similar to the log-transformed result. This illustrates
how a non-parametric test or a log-transformation can both be
effective strategies for data with skew and/or outliers.

2. The p-value of the Wilcoxon Signed-Rank test is 0.003, when
the assumptions of parametric tests (such as the paired t-test)
are satisfied that test is generally the more powerful than its
non-parametric analogs.
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Conclusion

Right now you should. . .

1. Understand the concerns involved with excluding outliers from
a statistical analysis

2. Recognize situations where removing outliers is a appropriate
3. Understand how to apply and interpret log-transformations
4. Be aware of non-parametric tests as an alternatives to the

one-sample and two-sample t-test

If you’d like another perspective on this topics read Ch 15 of
“Introduction to the Practice of Statistics” available here:
http://bcs.whfreeman.com/webpub/statistics/ips9e/
9781319013387/companionchapters/companionchapter15.pdf
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