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Outline

Multiple regression is huge topic, one that can take years to
exhaustively study. In this lecture I hope to introduce a few
modeling concepts that you’ll find helpful:

I Adjusting for confounding effects
I Models containing both quantitative and categorical predictors
I Choosing between different models
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Multiple Regression

Generally speaking, multiple regression models a quantitative
outcome using a linear combination of variables:

yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi

I We were able to express one-way ANOVA using this format
I We can also model an outcome as a function of multiple

different explanatory variables
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Example - Ozone Concentration

I Ozone is a pollutant linked to respiratory ailments and heart
attacks
I Ozone concentrations fluctuate on a day-to-day basis depending

on multiple factors
I It is useful to be able to predict concentrations to protect

vulnerable individuals (ozone alert days)

I The data in example consist of daily ozone concentration (ppb)
measurements collected in New York City, along with three
possible explanatory variables:
I Solar: The amount of solar radiation (in Langleys)
I Wind: The average wind speed that day (in mph)
I Temp: The high temperature for that day (in Fahrenheit)
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Ozone Concentration in New York City

I A typical first step in modeling is to inspect the scatterplot
matrix
I What do you see?

Ozone

0 50 100 150 200 250 300 60 70 80 90

0
50

10
0

0
10

0
25

0

Solar

Wind

5
10

15
20

0 50 100 150

60
70

80
90

5 10 15 20

Temp

5 / 37



Ozone Concentration in New York City

I Wind and Temp both seem to have strong linear relationships
with Ozone

I Solar shows a more diffuse, possibly quadratic relationships
with Ozone

I Many of these explanatory variables are related with each other,
which might be problematic
I For example, Wind and Temp have a strong negative correlation
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Modeling Ozone Concentration

I The correlation matrix is another we can use to understand
these relationships:

Ozone Solar Wind Temp
Ozone 1.0000000 0.3483417 -0.6124966 0.6985414
Solar 0.3483417 1.0000000 -0.1271835 0.2940876
Wind -0.6124966 -0.1271835 1.0000000 -0.4971897
Temp 0.6985414 0.2940876 -0.4971897 1.0000000

I Temp is most strongly correlated with Ozone, so let’s start
with the simple linear regression model:

Ozonei = β0 + β1Tempi + εi
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Modeling Ozone Concentration

I The estimated model is Ôzonei = −147 + 2.4Tempi
I The R2 of this model is 0.49, it explains almost half the

variability in Ozone
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Modeling Ozone Concentration

I Can this model be improved?
I Lets consider also using Wind, the variable with the second

strongest marginal relationship with ozone
I We’ll use the model: Ozonei = β0 + β1Tempi + β2Windi + εi

I The estimated model is Ôzonei = −147+1.8Tempi −3.3Windi
I Notice the effect of temperature is less pronounced now that

the model includes wind
I This is due to the correlation between these predictors
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Modeling Ozone Concentration

I This model is defined by two different slopes, creating a
regression plane
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Modeling Ozone Concentration

I An incredibly important feature of multiple regression is that it
allows us to estimate conditional effect of each variable
I b1 = 1.8 is the expected increase in Ozone for a 1 unit increase

in Temp when Wind is held unchanged
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Confounding

Pause for a moment and think about the following:

1. Is Wind a confounding variable in the relationship between
Temp and Ozone? Justify your answer (hint: use the
scatterplot/correlation matrix and the definition of
confounding)

2. How does stratification relate to the idea of a conditional
regression effect?
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Confounding

I Because multiple regression provides conditional effects, it
can be used to control for confounding variables

I Unlike stratification, we can use multiple regression to control
for quantitative confounding variables
I We can also control for many confounding variables

simultaneously by including them in the multiple regression
model
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Practice

1. Load the Iowa City Home Sales dataset into Minitab
2. Fit a simple linear regression model using “area.living” (size of

the livable space in sq. ft) to predict “sale.amount” (sale price
of the home) and interpret the coefficient of area.living

3. Fit a multiple linear regression model using “area.living” and
“bedrooms” (the number of bedrooms) to predict
“sale.amount”. How does the coefficient of this model compare
with the model you fit in part 2? Why did it change?
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Practice - Solution

I In the simple linear regression model, the coefficient of
area.living is 139.3
I Suggesting each additional square foot in livable area

corresponds with a $139 increase in value

I In the multiple regression model that controls for number of
bedrooms, the coefficient of area.living is 129.5
I Suggesting that for two homes with the same number of

bedrooms each additional square foot leads to a $129 increase
in value

I These are different because livable area and number of
bedrooms are correlated
I In the simple linear regression model the value added to a home

by “bedrooms” was being captured by the “area.living”
coefficient
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Categorical Variables

I We’ve already seen a regression model involving categorical
variables in one-way ANOVA
I This model taught us about reference categories and dummy

variables

I When combined with quantitative predictors, including
categorical variable yields separate parallel regression lines for
each group
I This can be understood as the dummy variables altering the

model’s intercept
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Categorical Variables

I Show below is the model: Price = −45598 + 154.9 ∗ Area +
61103 ∗ X1 Story Brick − 42882 ∗ X2 Story Condo + . . .
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Non-linear Associations

I The regression framework is flexible enough to allow for
non-linear relationships between a predictor and an outcome

I The plot below illustrates the model:
Ozone = b0 + b1 ∗ Wind + b2 ∗ Temp + b3 ∗ Temp2 + ε
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Non-linear Associations

I We can see that the conditional effect of temperature in this
model is quadratic
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Practice - Non-linear Associations

Using the Iowa City Home Sales dataset:

1. Fit a simple linear regression model using “area.lot” to predict
“sale.amount”, record and interpret this model’s R2 value.

2. In the “Fit Regression Model” menu click on the “Model”
button and use the “Terms through order” dropdown menu to
add a quadratic effect for “area.lot” (You should see
‘area.lot’*‘area.lot’ appear as term in the model). How does
this model’s R2 value compare to the simple linear regression
model?
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Practice - Solution

1. The simple linear regression model has an R2 value of 26.41%,
indicating that more than one fourth of the variability in sale
price can be explained by the size of the lot.

2. The model including a quadratic effect has an R2 value of
40.13%, seemingly indicating that this model provides a better
representation of how lot area relates to sale price.
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Choosing a Model

I We could impose a quadratic (or higher degree polynomial)
between any quantitative variable and the response variable,
but should we?

I The downside of including non-linear effects is two-fold:
I The model becomes more difficult to interpret, a 1-unit increase

in Temp no longer has a constant effect
I The model might be too specific to the sample data and won’t

generalize properly to the population of interest

I Model selection is a broad area of statistics, in the next few
slides we’ll try and cover a few guiding principles and tools that
help with this process
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Choosing a Model

Principle #1 - The Bias vs. Variance Tradeoff

I As a model includes more variables it becomes less biased
(think about what happens if you omit a quadratic term for a
truly quadratic relationship)

I However, additional variables also increase a model’s variance
(think about what happens if you include a 6th degree
polynomial for a truly linear relationship)

I If too many variables are included, the model might fit the
sample data well (low bias) but it’s coefficients will change
dramatically if data is added or removed (high variance)
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The Bias vs. Variance Tradeoff
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I Simple linear regression is biased because it doesn’t account for
the curvature in the true relationship between X and Y

I However, it is shows low variance, fitting it to a different
sample doesn’t change much
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The Bias vs. Variance Tradeoff
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I This model is very capable of capturing the curvature in the
true relationship between X and Y

I However, it contains too many parameters, it changes
dramatically depending on the specific sample that it is fit to
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Choosing a Model

Principle #2 - Parsimony

I If two models are equally good (roughly) at explaining an
outcome, the simpler should be preferred (this principle is
sometimes called “Occam’s razor”)

I Simpler models are easier to interpret and have lower variance;
however, we don’t want to simplify things too much
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Choosing a Model - Exhaustive Approaches

I So how do find the sweet spot where the model isn’t too
complex or too simple?

I A metric like R2 will always suggest the largest model
I But this model will have high variance (it fits the current data

well, but its coefficients could change dramatically if data points
are added or removed)

I A better metric will adjust for the number of variables a model
includes, potentially penalizing larger models which might be
overfit
I Adjusted R2 does exactly this, it modifies R2 to account for

the number of predictor variables
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Choosing a Model - Exhaustive Approaches

I A metric like Adjusted R2 makes it reasonable to compare
many possible models and objectively choose one of them
I When the number of variables is small enough, it can be

feasible to use a best subsets approach that considers all
possible combinations of the available variables

I In Minitab, this can be done using “Stat -> Regression ->
Regression -> Best Subsets”

I Unfortunately, Minitab only allows you to use quantitative
predictors when doing best subsets
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Choosing a Model - Exhaustive Approaches

Which model appears to be the best?
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Choosing a Model - Algorithmic Approaches

I When there are too many possible models to manually sift
through, an alternative approach is to use an algorithm:
I For example, we could start with an intercept only model
I Then add the variable that is “most significant” (based upon

that variable’s F -test)
I We could keep doing this until there are no statistically

significant variables left to add
I This procedure is known as forward selection
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Choosing a Model - Algorithmic Approaches

I Alternatively, our algorithm could start with the full model and
eliminate variables with high p-values one-at-a-time
I When there are no more variables that can be eliminated the

algorithm ends
I This procedure is known as backward selection

I A compromise algorithm known as stepwise selection is like
the aforementioned procedures, but it can either add or drop
variables at every step (rather than only dropping variables like
backward selection, or only adding variables like forward
selection)
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Choosing a Model - Algorithmic Approaches

I These selection algorithms are implemented in Minitab and can
be accessed using the “Stepwise” button under “Fit Regression
Model”

I Practice: With your group: apply backward selection to find a
model for “Score” in UT-Austin professor
I Start with the predictors “bty_avg”, “age”, “ethnicity”,

“gender”, “rank”, and “outfit” and use α = .1
I What is your final model? Which variable is most important?
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Choosing a Model

I Algorithmic approaches, despite being frequently used, have
several downsides
I They are greedy algorithms, a computer science term meaning

they focus on making a short-term optimization at each step
but aren’t guaranteed to yield the best overall model

I They rarely agree - forward, backward, and stepwise approaches
often choose different models

I They rely on multiple hypothesis tests and don’t make
corrections (this is difficult because we are never sure how many
tests will be conducted during the model search)

I Human insight is ignored
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Choosing a Model

I It is worth mentioning that several more modern (and generally
regarded as better) approaches exist including:
I cross validation
I model selection criteria like AIC and BIC
I penalization approaches like LASSO

I These approaches are beyond the scope of this course, but you
can learn about some of them in STA-230 (Intro to Data
Science)
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Practice - Model Selection

1. Using the Iowa City Home Sales dataset, use adjusted R2 to
determine which of the two models on slide 20 should be
preferred

2. Using the “Stepwise” menu under “Fit Regression Model”,
apply forward and backward selection algorithms to select the
optimal model (using the seven “area” variables as candidate
continuous predictors). Be sure to remove the quadratic term
for area.lot using the “Model” menu beforehand. Use α = 0.05
for each method. How many variables does each method
select?
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Practice - Solution

1. The simple linear regression model has an adjusted R2 of
26.32%, compared to 39.97% for the quadratic model. This
indicates the quadratic model is better even after accounting
for potential overfitting.

2. In this case both algorithms select a model containing 5 of 7
area variables
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Conclusion

I Multiple regression is a very large topic, we’ve only scratched
the surface

I I encourage you to consider taking Sta-310 - Statistical
Modeling to learn more about multiple regression and other
statistical models

37 / 37


