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Introduction

Ï The “halo effect” is a hypothesized cognitive bias where a
positive impression of one aspect of a person/brand leads to
other aspects of that same person/brand being viewed more
favorably than they should

Ï Today we’ll look at data from the article: “Beauty is Talent:
Task Evaluation as a Function of the Performer’s Physical
Attraction” published in The Journal of Personality and Social
Psychology in 1974

Ï 60 undergraduate males scored (from 0 to 25) an essay
supposedly written by a female undergraduate

Ï Attached to each essay was a photo of the supposed author that
was randomly assigned from one of the following conditions:
“attractive”, “unattractive”, or “none”
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Hypothesis testing

There are two types of hypotheses we might consider for this
experiment:

1. A “global” hypothesis - Is an essay’s rating associated with the
type of photo attached to it?

2. “pairwise” hypotheses - Do the scores of essays with “attractive”
photos differ from those with “unattractive” photos?

Ï There are 3 possible pairwise hypotheses in this example

Ï Pairwise hypotheses can be evaluated using two-sample t-tests
Ï However, type I errors due to multiple tests are a concern
Ï Analysis of Variance (ANOVA) allows us to evaluate the global

hypothesis with a single test
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The Null Hypothesis for ANOVA

If the type of assigned photo makes no difference, we’d expect the
data in each group to follow the same distribution. Below is the
overall distribution of scores:

5 10 15 20 25

Score

Table 1: Average essay score regardless of group

mean sd n
14.7 5.3 60
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The Null Hypothesis for ANOVA

Under the null hypothesis of no association, we’d expect the ratings
in each of the 3 groups to come from this overall distribution.
Below we simulate this by randomly giving each of our data-points a
group label (unrelated to its actual group):

A
ttr

ac
tiv

e

5 10 15 20 25

Score

P
ho

to
 T

yp
e

Even when using randomization to force there to be no association
we don’t see exactly the same mean for every group.
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Hypothesis testing

Below are the actual data observed in our study:
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ANOVA is based upon measuring how different the observed data
are from what we’d expect under a null hypothesis of no association.
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Predictions

Ï Let’s suppose you want to predict how a subject will rate the
essay

Ï If you believe there’s no association (ie: the type of photo
doesn’t matter), a logical prediction is the overall mean of 14.7

Ï You’d expect this prediction to be closest to the score because
the sample mean is the center of the score distribution
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Predictions

But what if you knew the new subject received an unattractive
picture with the essay? Could you make a better prediction?

Unattractive

None

Attractive

0 5 10 15 20 25

0

2

4

6

0

2

4

6

0

2

4

6

Score

 

grp

Attractive

None

Unattractive

8 / 31



Modeling

Ï To explore whether knowing the assigned group actually leads
to a better prediction we’ll need to introduce statistical
modeling

Ï A model is a simplified representation of some phenomenon
Ï Models are used for both explanation and prediction
Ï For example, we might use a model to predict an essay’s score

Ï A statistical model is one that involves a probability
distribution
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Null Models

Ï A model that doesn’t rely on any explanatory variables is often
used as a null model

Ï This model can be expressed in plain English as “predict the
overall mean for every observation”

Ï This model can be expressed statistically as:

yi =µ+ϵi

Ï ϵi is an unexplained deviation from the mean (we assume these
are normally distributed with a mean of zero)

Ï This model suggests ŷi (the model’s prediction for person i)
should be y (the sample mean)

Ï In our example, each essay’s predicted score would be 14.7
under this model
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A Better Model?

Ï We do not expect the null model to be optimal
Ï Like any null hypothesis, it is a “strawman” that we seek to

statistically disprove

Ï In ANOVA we consider the alternative model:

yi =µi +ϵi

Ï ϵi is an unexplained deviation from the group mean (we assume
these are normally distributed with a mean of zero)

Ï This model suggests predictions: ŷi = y i

Ï In our example, an essay with an unattractive photo would
receive a predicted score of 12.1, but one with an attractive
photo would receive a predicted score of 16.4
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ANOVA

Ï Analysis of variance (ANOVA) is a statistical approach that
allows us to compare these null model and alternative models

Ï One-way ANOVA refers specifically to the scenario where the
alternative model involves a single categorical explanatory
variable (as has been the case in our current example)

Ï As the name indicates, the method analyzes the variance of
each model’s predictions to determine if the alternative model
is superior to the null model
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Summarizing a Model

Ï Under the any model each subject deviates from their
prediction by a residual:

ri = ŷi −yi (Definition of a residual)
= y −yi (Residuals for the null model)

Ï We can summarize the total variability of the null model’s
predictions using a sum of squares:

SST =∑
i

r2
i for the null model

Ï We call this SST (sum of squares total) because it is the
largest possible sum of squares (of any justifiable model)
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Summarizing a Model

Ï The alternative model can also be summarized using a sum of
squares:

SSE =∑
i

r2
i for the alternative model

Ï We call this SSE because it summarizes variability that remains
in the errors of the model which uses “group”

Ï This is the model want to establish as statistically superior in
order to claim an association between “group” and the outcome
variable
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Comparing Models

If an alternative model is superior to the null model (ie: the group
means really are different at the population level), SSE will be much
smaller than SST
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Note: SSE is the total of each group’s SS (ie: 27.9 + 20.2 + 21.9), SST is the SS for all of the data (ie: 623.7)
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Comparing Models

However, if “group” isn’t associated with Y (ie: the group means
are identical at the population level), SSE will still be slightly
smaller than SST
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Evaluating the Role of Random Chance

Ï Because SSE will always be less than SST , we should be
asking:

Ï “Does the grouping variable improve model fit beyond what
might be expected due to random chance?”

Ï ANOVA answers this question using the test statistic:

F = (SST −SSE )/(d1−d0)
Std. Error

Ï d1 and d0 refer to the number of parameters in the model
being considered and the null model, in our example d0 = 1
(the single overall mean) and d1 = 3 (each group’s mean)

Ï The F statistic can be interpreted as the standardized drop in
the sum of squares per additional parameter included in the
alternative model
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Randomization F-tests

Ï We started off by considering what the data might look like if
we randomly assigned group labels (slide 5)

Ï If we did this many times, we could get an idea of how the F
statistic is distributed under the null hypothesis

Ï This StatKey menu allows us to randomize the data and track
the distribution of the F statistic

Here is a link to the data
https://remiller1450.github.io/data/halo_effect.csv
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The F-distribution

Ï Under the null hypothesis (ie: presuming the null model is
true), this F -statistic follows an F -distribution that depends
upon two different degrees of freedom (df ) parameters

Ï The numerator df is d1 −d0
Ï The denominator df is n−d1

Ï We can use StatKey to view various F -distribution curves
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What is the Standard Error?

Ï We’ve seen that standard errors tend to look like a measure of
variability divided by the sample size

Ï In the ANOVA setting:

Std. Error= SSE
n−d1

Ï This is the sum of squares of the alternative model divided by
its degrees of freedom, df = n−d1

Ï Using this standard error, the F statistic can be expressed:

F = (SST −SSE )/(d1−d0)
SSE/(n−d1)
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The F -test and Variability

Ï SST =∑
i r2

i where ri = yi −y is the sum of squares for the null
model, this model predicts each yi using the overall mean y

Ï SST describes total variability in y

Ï SSE =∑
i r2

i where ri = yi −y i is the sum of squares for the
alternative model, this model predicts each yi using a
group-specific mean y iÏ SSE describes the variability that remains after accounting for

which group a data points belongs to
Ï By subtraction, we can determine how much variability is being

explained by the parameters included in the alternative model:

SST = SSE +SSG

Ï SSG , the sum of squares groups, denotes the amount of
variability explained by using the “group” variable
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Simplifying the F -statistic

Ï Using SSG , we can express the F -statistic as:

F = SSG/(d1−d0)
SSE/(n−d1)

Ï Sums of squares divided by their degrees of freedom are often
called mean squares, they allow for a simpler looking F
statistic:

F = MSG
MSE

Ï MSG is the mean square of groups, MSE is the mean square of
error
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The ANOVA Table

Ï Calculating sums of squares and mean squares by hand is
extremely tedious and something we won’t spend any time
doing in this class

Ï Instead you will be expected to understand a common piece of
software output known as an ANOVA table

Ï The general form of these tables is shown below:

Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" d1 −d0 SSG MSG MSG/MSE Use Fd1−d0,n−d1
Error n−d1 SSE MSE
Total n−d0 SST

Ï For one-way ANOVA:
Ï d0 = 1, the null model has one parameter, a single overall mean
Ï d1 = k, the alternative model has k parameters, a different

mean for each group
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The ANOVA Table - Practice

Practice completing the following ANOVA table (assuming this is
one-way ANOVA, where d0 = 1):

Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" 4 200 ? ? ?
Error ? 440 ?
Total 59 ?
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The ANOVA Table - Practice (solution)

In this example d1 = k = 5 and n = 60, so:
Source df Sum Sq. Mean Sq. F -statistic p-value
"Group" 4 200 50 6.25 0.0003
Error 55 440 8
Total 59 640

Ï The p-value is found using the right-tail area beyond 6.25 of an
F distribution with (4, 55) degrees of freedom
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Inference after ANOVA

Ï The results of one-way ANOVA only tell us whether a
difference in group means exists, not which groups are different

Ï After a statistically significant ANOVA test we should further
investigate which groups differ

Ï In R, we’ll use Tukey’s honest significant difference (HSD)
test (sometimes called Tukey’s range test)

Ï Tukey’s HSD naturally controls the Type I error rate for all
possible pairwise comparisons (so we avoid the problem of doing
multiple tests)

Ï This week’s lab will cover how to use this test
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A Few Loose Ends

ANOVA compares:

The null model: yi =µ+ϵi suggesting predictions: ŷi = y
The alternative model: yi =µk +ϵi suggesting predictions: ŷi = yk

Ï We haven’t talked much about the unexplainable deviations
(the ϵi ’s)

Ï ANOVA was derived under the assumption that they are
normally distributed with a mean of zero

Ï We’ll never actually know ϵi , but we can estimate it via ri
Ï This suggests we should check the distribution of the residuals

to assess whether the ANOVA test was valid
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Normality of Y?

ANOVA doesn’t require normality of the outcome variable
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What if the residuals aren’t Normally distributed?

Ï If the residuals are not normally distributed some options
include:

Ï Apply a log-transformation to the outcome variable
Ï Use a randomization testing approach to ANOVA (such as the

one implemented in StatKey)
Ï Report your ANOVA results with caution
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ANOVA and the t-test

Ï The models compared by ANOVA correspond to the following
hypotheses:

H0 :µ1 =µ2 = . . . =µk , HA : At least one mean differs

Ï When, k = 2 these are the same hypotheses as the two-sample
t-test

Ï Many textbooks choose to describe ANOVA as an extension of
the t-test (rather than a statistical modeling approach)

31 / 31


