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Introduction

To begin today we’ll define two related but different terms:

Ï Standard deviation: A description of the variability of cases
around their mean (for a quantitative variable)

Ï We can calculate the sample standard deviation directly from
our data with something like: sd(data$variable) in R

Ï Standard error: A description of the variability of estimates
around a true parameter (ie: the population parameter of
interest)

Ï We cannot calculate standard error in a similar manner because
our sample data provides a only single point estimate of the
population parameter of interest

Ï For example, the sample mean is just a single estimate the
population’s mean
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Sampling Variability

The scatterplot below depicts a population (N = 1000) where the
variables X and Y are not related (ie: ρ = 0):

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

3 / 25



Sampling variability

Here is a random sample (n = 20) from this population (sampled
cases are colored in red), the sample correlation is r =−0.245:
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So, the sample data suggest a weak negative correlation despite
these variables having no correlation in the population
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Sampling variability

Below are another four random samples (each using n = 20):
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Across these samples, the observed sample correlations range from
r =−0.31 (top right) to r = 0.35 (bottom right)
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A few questions

Now consider a population where you do not know the true
correlation between X and Y :

1) If the you take a single sample and find a sample correlation of
r = 0.33, how confident can you be that X and Y are related in
the population?

2) If you take 100 different samples and find sample correlations
ranging from r = 0.25 to r = 0.35, how confident can you be
that X and Y are related in the population?

3) If you take 100 different samples and find sample correlations
ranging from r =−0.15 to r = 0.45, how confident can you be
that X and Y are related in the population?
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Answers

1) Not confident, it seems entirely possible that ρ = 0 but we
happened to see an unusual sample where r = 0.33 purely by
chance.

2) Very confident, none of the samples had correlations near zero
and it’d be very unlikely for all 100 of our samples to have
sample correlations this large by chance.

3) Not confident, it seems like ρ = 0 is plausible since some of the
samples had correlations near zero.
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Sampling distributions

The distribution of all possible estimates that could be observed
when sampling is known as the sampling distribution:
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Ï Standard error is the standard deviation of the values in a
sampling distribution

Ï It allows us to more confidently assess whether a point estimate
reflects a real characteristic of the population

Ï For example, if we observe r = 0.4 with a standard error of 0.1,
we’d be confident a relationship exists, but if we observe r = 0.4
with a standard error of 0.3 we would not be confident
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Bootstrapping

Ï Getting an accurate picture of a sampling distribution requires
many different random samples from the population

Ï It’s not feasible to re-do a study hundreds of times just to
assess sampling variability

Ï However, bootstrapping, or re-sampling cases from the
original sample with replacement can be used to estimate
sampling variability

Ï Bootstrapping will only work when your sample size is large
enough (n ≥ 30) for your the cases in your sample to exhibit a
similar amount of variability as the cases in your population

Ï It’s a common misconception that bootstrapping is great when
you have a small sample size
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Bootstrapping

Re-sampling with replacement means that some cases in the original
sample will appear more than once in a bootstrap sample:

This is necessary to generate synthetic samples of size n (you should
recall that n is an important contributor to sampling variability)
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Bootstrapping

The purpose of bootstrapping is to use your original sample to
approximate the sampling distribution:

Ï Each bootstrap sample produces a bootstrap estimate, and
these are used to form the bootstrap distribution

Ï The bootstrap distribution is a direct analog of the sampling
distribution, though it will be centered at the original estimate
rather than the population parameter
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Practice

Ï Basketball pundits will sometimes describe certain games with
phrases like “the teams got into a shootout”

Ï But is there a correlation between the number of 3-pt attempts
of one team and their opponent?

Ï We’ll load data from the Golden State Warrior’s record setting
2015-16 season into an online app named “StatKey”

Click here to download that data as a CSV
Click here to open StatKey

Question: Using the Bootstrap CI for correlation StatKey menu,
find the standard error of correlation coefficient between “FG3A”
and “OppFGA3A”. Do you think the weak correlation observed in
these data can be explained by sampling variability?

12 / 25

https://remiller1450.github.io/data/GSWarriors.csv
https://www.lock5stat.com/StatKey/index.html


Interval estimation

Statisticians consider two types of estimates for an unknown
population parameter:

1) Point estimate - a single number that is the best guess for
what the population parameter is. For example, the sample
mean x is a point estimate for the population’s mean, µ.

2) Interval estimate - a range of numbers that represent
plausible values of the population parameter. Interval estimates
usually have the form: Point Estimate±Margin of Error
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Confidence intervals

Ï A confidence interval is an interval estimate whose margin of
error is based upon a procedure with a long-run “success rate”
known as a confidence level

Ï A 95% confidence interval was created using a procedure that
will succeed in containing the true population parameter in 95%
of different random samples (or study replications)

Ï The confidence level does not describe the likelihood that
particular interval succeeds, instead it describes the estimation
procedure’s long-run success rate

14 / 25



Confidence intervals

Ï A confidence interval is an interval estimate whose margin of
error is based upon a procedure with a long-run “success rate”
known as a confidence level

Ï A 95% confidence interval was created using a procedure that
will succeed in containing the true population parameter in 95%
of different random samples (or study replications)

Ï The confidence level does not describe the likelihood that
particular interval succeeds, instead it describes the estimation
procedure’s long-run success rate

14 / 25



Confidence intervals

Shown below are 95% CI estimates from 100 different random
samples (n = 20) drawn from a population with correlation of ρ = 0
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Notice that 5 of 100 samples resulted in a 95% CI that failed to
contain the true population-level correlation!
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Bootstrapping and the 2-SE method

A valid 95% CI requires a margin of error that calibrated to capture
the truth in 95% of different random samples:

Point Estimate±Margin of Error

When the sampling distribution is symmetric and bell-shaped, the
95% rule produces valid 95% CIs:

Point Estimate±2∗SE

Ï The standard error, or SE , can be found by bootstrapping
Ï Bootstrapping can also help us judge whether the sampling

distribution is likely to be bell-shaped
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The 95% rule

The SE multiplier of 2 and the 95% rule arise from the distribution
of values in the Normal distribution:

What SE multiplier can be used for a 99% confidence interval?
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Practice

A study conducted by Johns Hopkins University Hospital found that
31 of 39 babies born in their facilities at 25 weeks gestation (15
weeks early) went on to survive. Our goal is to estimate the
proportion of babies born under similar circumstances in similar
hospitals that will survive.

1) In this application we are trying to estimate p, a population
proportion, using p̂ = 31/39. Use StatKey to find the
bootstrapped standard error of p̂

2) Using the bootstrapped SE and the point estimate, construct a
95% confidence interval estimate for p

3) Interpret your 95% confidence interval estimate
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Practice (solution)

1) The bootstrapped SE is approximately 0.066
2) The 95% CI for p is p̂±2∗SE =

31/39±2∗0.066= (0.663,0.927)
3) We can be 95% confident the survival rate for babies born in

comparable circumstances is between 0.663 and 0.927. This
represents a range of plausible values that we are confident will
contain the true proportion.
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The percentile bootstrap method

Ï If the sampling distribution is not bell-shaped, the 95% rule
might produce to invalid confidence intervals

Ï An invalid CI procedure systematically fails to capture the true
population parameter as often as the confidence level advertises
(ie: 95% of the time)

Ï The percentile bootstrap method does not assume any
distributional shape, and can be used in a wider variety of
situations

Ï Finding a 95% percentile bootstrap CI is done by excluding the
most extreme 2.5% of the bootstrap samples on each side of
the point estimate
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The percentile bootstrap method

The diagram below illustrates the percentile bootstrap method for a
95% CI estimate of a population’s mean:
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The percentile bootstrap method

The percentile bootstrap method can be used to produce intervals
with confidence levels other than 95%:
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Practice

A study conducted by Johns Hopkins University Hospital found that
31 of 39 babies born in their facilities at 25 weeks gestation (15
weeks early) went on to survive. Our goal is to estimate the
proportion of babies born under similar circumstances in similar
hospitals that will survive.

1) Use StatKey and the percentile bootstrap method to find the
95% CI estimate for p.

2) Compare this 95% CI with the interval we previously found
using the 2-SE method
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Practice (solution)

1) I got (0.641, 0.923) - your answer might be slightly different
(depending on your bootstrap samples)

2) Recall the 95% CI from the 2-SE method was (0.663, 0.927).
The percentile bootstrap interval is somewhat wider, which is
likely needed to achieve 95% confidence given the skew seen in
the bootstrap distribution.
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Conclusion

Ï Trends observed in sample data are not a perfect reflection of
the population we’re studying

Ï Confidence intervals provide a meaningful way to quantify
how much uncertainty exists when generalizing our sample
results to a broader population

Ï Confidence intervals take the form:
Point Estimate±Margin of Error

Ï Bootstrapping is a method used to find the amount of
sampling variability present in our data

Ï If the bootstrap distribution is reasonably bell-shaped, we can
use the 2-SE method to come up with a 95% CI estimate

Ï More generally, we can use the percentile bootstrap method to
find confidence intervals for a variety of confidence levels and
sampling distribution shapes
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