Confidence Intervals Part 3 - Student's *t*-distribution

Ryan Miller

We've now seen that confidence interval estimates for many different descriptive statistics can be found using the generic formula:

point estimate $\pm c * SE$

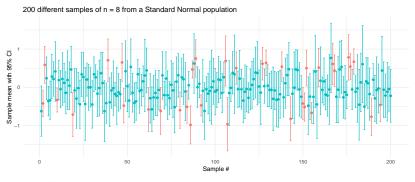
- The standard error of our point estimate, SE, can be calculated using information from our sample data and a formula based upon the Central Limit theorem
- We've calibrated the confidence level of the interval by choosing "c" from a standard normal distribution

For a *single mean*, CLT suggests:

$$\overline{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

• σ is the standard deviation of the population

- Different from our examples involving proportions, the previous CLT result involves a second unknown parameter, σ (the population's standard deviation)
 - It seems natural to simply replace this with an estimate from the sample, s, but this is what happens:



- Clearly this 95% CI procedure is *invalid* too many of these intervals do not contain µ (which is 0)
- William Gosset, a chemist working for Guinness Brewing, became aware of this issue in the 1890s
 - His work evaluating the yields of different barley strains frequently involved small sample sizes

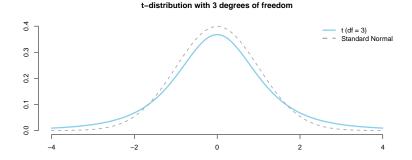
- Clearly this 95% CI procedure is *invalid* too many of these intervals do not contain µ (which is 0)
- William Gosset, a chemist working for Guinness Brewing, became aware of this issue in the 1890s
 - His work evaluating the yields of different barley strains frequently involved small sample sizes
- In 1906, Gosset took a leave of absence from Guinness to study under Karl Pearson (developer of the correlation coefficient)
 - \blacktriangleright Gosset discovered the issue was due to using s interchangeably with σ

- Treating s as if it were a perfect estimate of σ results in a systematic underestimation of the total amount of variability involved in making the CI
 - To account for the additional variability introduced by estimating σ using s, a modified distribution that's slightly more spread out than the Standard Normal curve must be used

- Treating s as if it were a perfect estimate of σ results in a systematic underestimation of the total amount of variability involved in making the CI
 - To account for the additional variability introduced by estimating σ using s, a modified distribution that's slightly more spread out than the Standard Normal curve must be used
- Typically the inventor of a new method gets to name it after themselves
 - However, Gosset was forced to publish his new distribution under the pseudonym "student" because Guinness didn't want it's competitors knowing they employed statisticians!
 - Student's t-distribution is now among the most widely used statistical results of all time

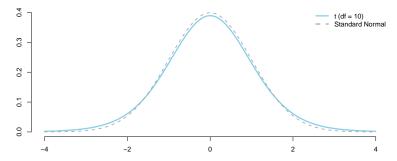
The t-distribution

The *t*-distribution accounts the additional uncertainty in small samples using a parameter known as *degrees of freedom*, or *df*:



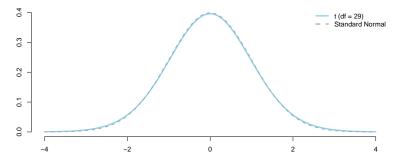
When estimating a single mean, df = n - 1

The t-distribution



t-distribution with 10 degrees of freedom

The t-distribution



t-distribution with 29 degrees of freedom

Practice

While waiting at an airport, a traveler notices 6 flights to similar a similar part of the country were delayed 6, 10, 13, 23, 45, 55 minutes. The mean delay in this sample was 25.33, with a sample standard deviation of s = 20.2. Assuming these data are a representative sample, answer the following:

- How many degrees of freedom are involved when using the t-distribution to form a CI estimate? What is the value of c that should be used for 95% confidence?
- 2) What is the 95% CI estimate for the average delay of flights to the part of the country this traveler is heading?

Practice (solution)

- 1) Because n = 6, we'd use df = n 1 = 5. For df = 5, c = 2.571 defines the middle 95% of the distribution.
- 2) Point Estimate $\pm MOE$, Point estimate $= \overline{x} = 25.33$, Margin of error $= c * SE = 2.571 * \frac{20.2}{\sqrt{6}}$
 - All together, 95% CI: $25.33 \pm 2.571 * \frac{20.2}{\sqrt{6}} = (4.1, 46.5)$
 - We are 95% confident the *average* delay is somewhere between 4.1 minutes and 46.5 minutes

Note: if we'd erroneously used a Normal model (instead of the *t*-distribution), we'd get an interval that is much narrower (9.2, 41.5), but this interval wouldn't have the confidence level we are advertising (ie: it wouldn't really be a 95% CI because it would miss too often)

When to use the *t*-distribution

The t-distribution was designed for small, Normally distributed samples

 However, it can also be reliably used on large samples, regardless of their shape

	Sample data are approximately Normal	Sample data are non-Normal or skewed
Sample size is large (n≥30)	Use t-distribution	Use t-distribution
Sample size is small (n < 30)	Use t-distribution	do not use t-distribution

Do not fall into the common misconception that the t-distribution requires a certain sample size

For a difference of two means, CLT states:

$$\overline{x}_1 - \overline{x}_2 \sim N\left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

- Similar to applications estimating a single mean, the *t*-distribution should be used when s₁ and s₂ are used as estimates of σ₁ and σ₂
 - Degrees of freedom are complicated for differences in means, so we'll rely on software for these scenarios

Conclusion

- We've now seen how normal approximations and Central Limit theorem allow us to successful construct confidence interval estimates for one proportion and a difference in proportions
 - With a slight modification, the *t*-distribution, we can also use CLT for one mean and a difference in means
 - The t-distribution is slightly more spread out than the Normal distribution, which accounts for added the added variability introduced by estimating the population's standard deviation
- Confidence interval estimates can be created for any descriptive statistic, but we'll rely on software like R for anything other other than the statistics mentioned above

