Detection of Cannabis Impaired Driving from Vehicle-based Inputs using Machine Learning Methods

 $\begin{array}{rl} \mbox{Ryan Miller}^1 & \mbox{Simon Hodson}^1 & \mbox{Trung Le}^1 & \mbox{Rose Schmitt}^2 \\ & \mbox{Gary Milavetz}^3 & \mbox{Tim Brown}^2 \end{array}$

¹Grinnell College Department of Statistics

²University of Iowa Driving Safety Research Institute

³University of Iowa College of Pharmacy

Introduction

Direct detection of cannabis impairment is complicated by the tenuous relationship between blood THC and degree of impairment

NHTSA Marijuana-Impaired Driving Report to Congress (July 2017)

IOWA Control Statesy Research Institutes

Data collection

- Within-subjects experimental design (n = 18 subjects, 6 conditions)
 - Iow-THC (~2.9%), high-THC (~6.7%), or placebo (~0%) vaporized cannabis
 - Iow-dose alcohol, or placebo
 - Various driver inputs and vehicle states were recorded at 60 Hz

Vehicle-based inputs

Drive scenario

We focus on a ~3-minute straight section of 4-lane divided expressway (speed limit 70 mph) with an embedded distraction task

We divide this scenario into 60-second samples of vehicle inputs
162 non-overlapping samples, or 270 samples w/ 50% overlap

We use 3 different validation schemes (mixed, split, overlapping) repeated 10x with different random splits:

- 60-second samples that do not overlap
 - Mixed-subject scheme: 108 of 162 samples used for training, the other 54 for evaluation, without considering the subject they came from
 - Split-subject scheme: all samples from 12 subjects used for training, all samples from the other 6 subjects used for validation
- **Overlapping scheme**: 60-second samples with 50% overlap
 - Subjects must be split to prevent data leakage

IOWA Detering Select

Split-Subjects (non-overlapping)

Split-Subjects (overlapping)

Mixed-Subjects (non-overlapping)

Machine learning methods

1. Feature engineering

- Process each sample's multivariate time series into a collection of derived features (ie: max Δ-speed over 2-seconds)
- Model input is a "standard" data matrix (# samples, # derived features)
- Random forest, gradient boosted trees (xgboost), and logistic regression algorithms

2. Deep learning

- The entire multivariate time series of each sample is used
- Model input is a 3-d array (# samples, # channels, # time steps)
- Inception time neural network and MINIROCKET convolutional kernel classifier

INWA Detwing Safety

Feature engineering

► For rolling windows of 0.1-sec, 0.2-sec, 0.5-sec, and 1-sec:

- Extract the average range, maximum range, and standard deviation of ranges as predictive features for each of the following inputs:
 - Brake pedal force
 - Accelerator pedal position
 - Steering wheel angle
 - Vehicle speed
 - Vehicle lateral position
 - Vehicle heading
- ► For the entire 60-sec sample:
 - Extract the average value, maximum value, and standard deviation of each input listed above

INWA Detwing Safety

Random forest

Gradient boosted trees (xgboost)

Inception time (architecture overview)

Inception time is an ensemble of neural networks, each contains 6 sequential inception modules with residual connections followed by pooling and one or more fully connected layers.

Inception time (inception modules)

- Each inception module begins with a "bottleneck" layer that reduces the dimension of the input multivariate time series (to m = 1 in this diagram).
- Different convolutional kernels are slid along the bottleneck output to produce a multivariate time series that is passed forward.

Results (top performers)

Scheme	Top Model	Bal Acc	AUC	TPR (w/ 0 FP)
Mixed (No-over)	Inception Time	0.63	0.76	0.167
Split (No-over)	Inception Time	0.55	0.63	0.098
Split (50% overlap)	XGBoost	0.66	0.74	0.049

Results (full table)

Model	Validation Scheme	Accuracy	Balanced Accuracy	AUC	TPR (w/ 0 FP)
Inception Time Mixed (No-over)		.72	0.625	.76	0.167
	Split (No-over)	.64	0.55	.63	0.098
	Split (50% overlap)	.67	0.595	.68	0.132
MINIROCKET	Mixed (No-over)	.63	0.64	.70	0.080
	Split (No-over)	.59	0.575	.61	0.056
	Split (50% overlap)	.59	0.595	.62	0.035
XGBoost	Mixed (No-over)	.66	0.585	.62	0.005
	Split (No-over)	.66	0.565	.64	0.012
	Split (50% overlap)	.71	0.66	.74	0.049
Random Forest	Mixed (No-over)	.62	0.515	.59	0.005
	Split (No-over)	.67	0.565	.61	0.002
	Split (50% overlap)	.65	0.6	.67	0.111
Logistic Reg	Mixed (No-over)	.59	0.475	.51	0.048
	Split (No-over)	.61	0.49	.52	0.009
	Split (50% overlap)	.65	0.545	.61	0.009

Results (ROC)

Results (low false positive rate)

20 / 29

Challenges (variability)

Cannabis vs. low-dose alcohol? (preliminary results)

Comparison — Alc vs. Placebo — Cannabis vs. Placebo

Results (feature importance)

SHAP and gain-based importance for xgboost:

Results (feature importance)

SHAP and gain-based importance for Random Forest:

Discussion

- Reliable vehicle-based impairment detection is challenging
 - Modern machine learning methods show some potential, but predictions contain substantial uncertainty
 - Nevertheless, prediction scores may be able to provide complimentary information that can be used in conjunction with other data in law enforcement or other settings

- Patterns in speed, brake force, and acceleration appear to be the most impactful predictors of impairment
 - This is consistent with the literature showing decreased speed and degraded longitudinal control⁴
 - It is important to acknowledge that this work used data from a 4-lane interstate (75 mph speed limit)

Limitations, future work, and additional considerations

- ▶ Small data set, only *n* = 18 subjects
 - Would like to incorporate data from other impaired driving studies, and potentially "control" data from on-road studies
- Single, consistent driving scenario
 - Exploring models across other driving environments/scenarios
 - Two-step approaches to prediction that first match the scenario then utilize the model trained for that scenario
- Difficult to identify the most impactful predictors in Inception Time model
- Unclear privacy concerns in collecting vehicle-based inputs
 - Most influential predictors may also be most difficult to collect

References

- McCartney D., Arkell T., Irwin C., Kevin R., McGregor I., "Are blood and oral fluid d9-tetrahydrocannabinol (THC) and metabolite concentrations related to impairment? A meta-regression analysis", *Neuroscience & Biobehavioral Reviews*, (2021) Volume 134 https://doi.org/10.1016/j.neubiorev.2021.11.004
- Peng YW, Desapriya E, Chan H, R Brubacher J. "Residual blood THC levels in frequent cannabis users after over four hours of abstinence: A systematic review." *Drug Alcohol Depend.* (2020) Nov 1;216:108177. doi: 10.1016/j.drugalcdep.2020.108177. Epub 2020 Jul 10. PMID: 32841811.
- Ismail Fawaz, H., Lucas, B., Forestier, G. et al. "InceptionTime: Finding AlexNet for time series classification". Data Min Knowl Disc. (2020) 34, 1936–1962. https://doi.org/10.1007/s10618-020-00710-y
- Dempster, A., Schmidt, D., Webb, G. "MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series Classification." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021) Pages: 248-257. https://doi.org/10.1145/3447548.3467231
- Hartman RL, Brown TL, Milavetz G, Spurgin A, Pierce RS, Gorelick DA, Gaffney G, Huestis MA. "Cannabis effects on driving longitudinal control with and without alcohol". J Appl Toxicol (2016). Nov;36(11):1418-29. doi: 10.1002/jat.3295. Epub 2016 Feb 18. PMID: 26889769.
- Middlehurst, M., Schäfer, P., Bagnall, A., Bake off redux: a review and experimental evaluation of recent time series classification algorithms. arXiv pre-print, 2023. https://doi.org/10.48550/arXiv.2304.13029

- Random Forest: https://tikz.net/random-forest/
- XGBoost:

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html

- Inception Time: Ismail Fawaz, H., Lucas, B., Forestier, G. et al. "InceptionTime: Finding AlexNet for time series classification". *Data Min Knowl Disc*. (2020) 34, 1936–1962. https://doi.org/10.1007/s10618-020-00710-y
- ROCKET: https://www.aeon-toolkit.org/en/latest/examples/classif ication/convolution_based.html

