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Introduction

Direct detection of
cannabis impairment
is complicated by the
tenuous relationship
between blood THC
and degree of
impairment

NHTSA Marijuana-Impaired Driving Report to Congress (July 2017)
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Data collection

Ï Within-subjects experimental design (n = 18 subjects, 6
conditions)

Ï low-THC (~2.9%), high-THC (~6.7%), or placebo (~0%)
vaporized cannabis

Ï low-dose alcohol, or placebo
Ï Various driver inputs and vehicle states were recorded at 60 Hz
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Vehicle-based inputs

We use 6 different vehicle-based inputs:
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Drive scenario

We focus on a ~3-minute straight section of 4-lane divided
expressway (speed limit 70 mph) with an embedded distraction task

Ï We divide this scenario into 60-second samples of vehicle inputs
Ï 162 non-overlapping samples, or 270 samples w/ 50% overlap
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Training and evaluation

We use 3 different validation schemes (mixed, split, overlapping)
repeated 10x with different random splits:

Ï 60-second samples that do not overlap
Ï Mixed-subject scheme: 108 of 162 samples used for training,

the other 54 for evaluation, without considering the subject they
came from

Ï Split-subject scheme: all samples from 12 subjects used for
training, all samples from the other 6 subjects used for
validation

Ï Overlapping scheme: 60-second samples with 50% overlap
Ï Subjects must be split to prevent data leakage
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Split-Subjects (non-overlapping)
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Split-Subjects (overlapping)
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Mixed-Subjects (non-overlapping)
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Machine learning methods

1. Feature engineering
Ï Process each sample’s multivariate time series into a collection

of derived features (ie: max ∆-speed over 2-seconds)
Ï Model input is a “standard” data matrix (# samples, # derived

features)
Ï Random forest, gradient boosted trees (xgboost), and logistic

regression algorithms
2. Deep learning

Ï The entire multivariate time series of each sample is used
Ï Model input is a 3-d array (# samples, # channels, # time

steps)
Ï Inception time neural network and MINIROCKET convolutional

kernel classifier
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Feature engineering

Ï For rolling windows of 0.1-sec, 0.2-sec, 0.5-sec, and 1-sec:
Ï Extract the average range, maximum range, and standard

deviation of ranges as predictive features for each of the
following inputs:

Ï Brake pedal force
Ï Accelerator pedal position
Ï Steering wheel angle
Ï Vehicle speed
Ï Vehicle lateral position
Ï Vehicle heading

Ï For the entire 60-sec sample:
Ï Extract the average value, maximum value, and standard

deviation of each input listed above
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Random forest
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Gradient boosted trees (xgboost)
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Inception time (architecture overview)

Inception time is an ensemble of neural networks, each contains 6
sequential inception modules with residual connections followed by
pooling and one or more fully connected layers.
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Inception time (inception modules)

Ï Each inception module begins with a “bottleneck” layer that
reduces the dimension of the input multivariate time series (to
m = 1 in this diagram).

Ï Different convolutional kernels are slid along the bottleneck
output to produce a multivariate time series that is passed
forward.

15 / 29



MINIROCKET
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Results (top performers)

Scheme Top Model Bal Acc AUC TPR (w/ 0 FP)
Mixed (No-over) Inception Time 0.63 0.76 0.167
Split (No-over) Inception Time 0.55 0.63 0.098
Split (50% overlap) XGBoost 0.66 0.74 0.049
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Results (full table)

Model Validation Scheme Accuracy Balanced Accuracy AUC TPR (w/ 0 FP)
Inception Time Mixed (No-over) .72 0.625 .76 0.167

Split (No-over) .64 0.55 .63 0.098
Split (50% overlap) .67 0.595 .68 0.132

MINIROCKET Mixed (No-over) .63 0.64 .70 0.080
Split (No-over) .59 0.575 .61 0.056
Split (50% overlap) .59 0.595 .62 0.035

XGBoost Mixed (No-over) .66 0.585 .62 0.005
Split (No-over) .66 0.565 .64 0.012
Split (50% overlap) .71 0.66 .74 0.049

Random Forest Mixed (No-over) .62 0.515 .59 0.005
Split (No-over) .67 0.565 .61 0.002
Split (50% overlap) .65 0.6 .67 0.111

Logistic Reg Mixed (No-over) .59 0.475 .51 0.048
Split (No-over) .61 0.49 .52 0.009
Split (50% overlap) .65 0.545 .61 0.009
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Results (ROC)
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Results (low false positive rate)
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Challenges (variability)

Random Forest

Inception Time
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Cannabis vs. low-dose alcohol? (preliminary results)
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Results (feature importance)

SHAP and gain-based importance for xgboost:
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Results (feature importance)

SHAP and gain-based importance for Random Forest:
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Discussion

Ï Reliable vehicle-based impairment detection is challenging
Ï Modern machine learning methods show some potential, but

predictions contain substantial uncertainty
Ï Nevertheless, prediction scores may be able to provide

complimentary information that can be used in conjunction with
other data in law enforcement or other settings
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Discussion (cont.)

Ï Patterns in speed, brake force, and acceleration appear to be
the most impactful predictors of impairment

Ï This is consistent with the literature showing decreased speed
and degraded longitudinal control4

Ï It is important to acknowledge that this work used data from a
4-lane interstate (75 mph speed limit)
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Limitations, future work, and additional considerations

Ï Small data set, only n = 18 subjects
Ï Would like to incorporate data from other impaired driving

studies, and potentially “control” data from on-road studies
Ï Single, consistent driving scenario

Ï Exploring models across other driving environments/scenarios
Ï Two-step approaches to prediction that first match the scenario

then utilize the model trained for that scenario
Ï Difficult to identify the most impactful predictors in Inception

Time model
Ï Unclear privacy concerns in collecting vehicle-based inputs

Ï Most influential predictors may also be most difficult to collect
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Image Credits

Ï Random Forest: https://tikz.net/random-forest/
Ï XGBoost:

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-
HowItWorks.html

Ï Inception Time: Ismail Fawaz, H., Lucas, B., Forestier, G. et
al. “InceptionTime: Finding AlexNet for time series classification”.
Data Min Knowl Disc. (2020) 34, 1936–1962.
https://doi.org/10.1007/s10618-020-00710-y

Ï ROCKET: https://www.aeon-toolkit.org/en/latest/examples/classif
ication/convolution_based.html
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