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Introduction

> Alcohol-involved crashes are a significant problem (~13,000
fatalities in the US per year, NHTSA)

> Passive detection of alcohol use may reduce their prevalence

> Using driver monitoring data, we assess:

» Overall capacity and relative contributions of eye and vehicle
data in differentiating between sober and alcohol-dosed driving
samples

» Measurement duration and performance

> Robustness when applied to new driving environments
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Data Collection

» Design: N =36 participants,
baseline (sober) drive, dosing
to target BrAC of 0.1, four
follow up drives at 0.1, 0.085,
0.07, and 0.055 BrAC

> Data: time-series of vehicle
inputs/states (miniSim) and
eye behavior (DMS)

> Aim: accurately classify data
samples from baseline
(alcohol negative) vs. follow
up drives (alcohol positive)
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Data Preparation

» “Rural Straight” scenario
> Approximately 8 min of driving on a straight, two-lane rural
road (55 mph)
> 180 drives, 153 used for analysis
» Drives split into 15, 30, 45, 60, 75, and 90 second samples
allowing 50% overlap
> All samples from a drive assigned to either training (2/3) or
validation (1/3) 10x
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Machine Learning Methods

1. Feature engineering
> Reduce each sample (time-series) to a single data point of
derived eye and vehicle measures
> Model input is a “standard” data matrix (# samples, # derived
features)
> Random forest (Ensemble of Decision Trees) and XGBoost
(Extreme Gradient Boosting)
2. Deep learning
> Uses raw multivariate time-series inputs from each sample
> Model input is a 3-d array (# samples, # features, # time
steps)
» ROCKET Random Convolutional Kernel Transform paired with
a Logistic Regression final classifier
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Feature Engineering

> Inputs chosen based on previous research
> Eyes: pupil size, gaze direction, head position, and blink
> Vehicle: speed, lateral deviation, steering, acceleration, and
braking
» Comprehensive summary statistics (dispersion focused) for
every input
> mean, std dev, 5th and 9th percentiles, 90% interpercentile
range, skewness, and kurtosis
» Additional derived features
> PERCLOS for each eye, number and duration of unique
fixations, and fixation velocities
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Classification Performance by Duration and Input
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AUC-ROC Summary (90 sec)
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Predictors | Model Mean | Std Min | Max
Random Forest | 0.802 | 0.061 | 0.679 | 0.882
Eye XGBoost 0.833 | 0.051 | 0.741 | 0.898
ROCKET 0916 | 0.039 | 0.842 | 0.977
Random Forest | 0.848 | 0.032 | 0.798 | 0.883
Vehicle XGBoost 0.865 | 0.039 | 0.788 | 0.902
ROCKET 0.880 | 0.034 | 0.818 | 0.925
Random Forest | 0.852 | 0.062 | 0.713 | 0.922
Combined | XGBoost 0.902 | 0.038 | 0.830 | 0.952
ROCKET 0.955 | 0.027 | 0.906 | 0.986
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True Positive Rate w/ Zero False Positives
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Voting Schemes and TPR/FPR for Combined Features
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Combined eye and vehicle models (90s), XGBoost (A and C) and
ROCKET (B and D)
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Voting Schemes and TPR/FPR for Eye Features
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Feature Contributions (overall eye vs. vehicle)
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Standardization adjusts for the larger number of eye-inputs available.
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Feature Contributions (XGBoost 90s)

Predictor Type

Contribution Standardized Contribution n

Lateral Vehicle Control
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Longitudinal Vehicle Control

Fixation Behavior

0.253
0.237
0.229
0.128
0.100
0.047
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0.092
0.147
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0.103
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Generalizability

“Dark” has curves, “Gravel” has curves, a different surface, and no
posted speed limit
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Summary of Main Results

Longer measurement duration (90s) lead to better results than
shorter ones, even when the total amount of data is fixed (8
minutes)

Using both eye and vehicle data works best, but eye data is
more generalizable to new driving scenarios without model
retraining

Deep learning methods (ROCKET) outperform feature
engineering despite modest amounts of data, but handcrafted
features and XGBoost are competitive when a very low FPR is
desired

Allowing different intervals within the same drive to “vote” may
be useful in reducing false positives



Limitations

» Trained models using study conditions as labels
> Some “positive” samples had BrAC of 0.055-0.07 with modest
drowsiness, others had BrAC of 0.085-0.10 with minimal
drowsiness
> No “negative” samples with low but non-zero BrAC < 0.05
> Future work should explore a broader range of BrAC and fatigue
combinations
> miniSim without ADAS, so possible behavioral differences
compared to real, on-road driving
> Limited number of driving environments (did not consider urban
settings or multi-lane highways)
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