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Introduction

Ï Alcohol-involved crashes are a significant problem (~13,000
fatalities in the US per year, NHTSA)

Ï Passive detection of alcohol use may reduce their prevalence
Ï Using driver monitoring data, we assess:

Ï Overall capacity and relative contributions of eye and vehicle
data in differentiating between sober and alcohol-dosed driving
samples

Ï Measurement duration and performance
Ï Robustness when applied to new driving environments
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Data Collection

Ï Design: N = 36 participants,
baseline (sober) drive, dosing
to target BrAC of 0.1, four
follow up drives at 0.1, 0.085,
0.07, and 0.055 BrAC

Ï Data: time-series of vehicle
inputs/states (miniSim) and
eye behavior (DMS)

Ï Aim: accurately classify data
samples from baseline
(alcohol negative) vs. follow
up drives (alcohol positive)
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Data Preparation

Ï “Rural Straight” scenario
Ï Approximately 8 min of driving on a straight, two-lane rural

road (55 mph)
Ï 180 drives, 153 used for analysis

Ï Drives split into 15, 30, 45, 60, 75, and 90 second samples
allowing 50% overlap

Ï All samples from a drive assigned to either training (2/3) or
validation (1/3) 10x
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Machine Learning Methods

1. Feature engineering
Ï Reduce each sample (time-series) to a single data point of

derived eye and vehicle measures
Ï Model input is a “standard” data matrix (# samples, # derived

features)
Ï Random forest (Ensemble of Decision Trees) and XGBoost

(Extreme Gradient Boosting)
2. Deep learning

Ï Uses raw multivariate time-series inputs from each sample
Ï Model input is a 3-d array (# samples, # features, # time

steps)
Ï ROCKET Random Convolutional Kernel Transform paired with

a Logistic Regression final classifier
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Feature Engineering

Ï Inputs chosen based on previous research
Ï Eyes: pupil size, gaze direction, head position, and blink
Ï Vehicle: speed, lateral deviation, steering, acceleration, and

braking
Ï Comprehensive summary statistics (dispersion focused) for

every input
Ï mean, std dev, 5th and 9th percentiles, 90% interpercentile

range, skewness, and kurtosis
Ï Additional derived features

Ï PERCLOS for each eye, number and duration of unique
fixations, and fixation velocities
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Classification Performance by Duration and Input
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AUC-ROC Summary (90 sec)
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True Positive Rate w/ Zero False Positives
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Voting Schemes and TPR/FPR for Combined Features

Combined eye and vehicle models (90s), XGBoost (A and C) and
ROCKET (B and D)
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Voting Schemes and TPR/FPR for Eye Features

Eye-only models (90s), XGBoost (A and C) and ROCKET (B and
D)
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Feature Contributions (overall eye vs. vehicle)

Standardization adjusts for the larger number of eye-inputs available.
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Feature Contributions (XGBoost 90s)
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Generalizability

“Dark” has curves, “Gravel” has curves, a different surface, and no
posted speed limit
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Summary of Main Results

Ï Longer measurement duration (90s) lead to better results than
shorter ones, even when the total amount of data is fixed (8
minutes)

Ï Using both eye and vehicle data works best, but eye data is
more generalizable to new driving scenarios without model
retraining

Ï Deep learning methods (ROCKET) outperform feature
engineering despite modest amounts of data, but handcrafted
features and XGBoost are competitive when a very low FPR is
desired

Ï Allowing different intervals within the same drive to “vote” may
be useful in reducing false positives
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Limitations

Ï Trained models using study conditions as labels
Ï Some “positive” samples had BrAC of 0.055-0.07 with modest

drowsiness, others had BrAC of 0.085-0.10 with minimal
drowsiness

Ï No “negative” samples with low but non-zero BrAC < 0.05
Ï Future work should explore a broader range of BrAC and fatigue

combinations
Ï miniSim without ADAS, so possible behavioral differences

compared to real, on-road driving
Ï Limited number of driving environments (did not consider urban

settings or multi-lane highways)
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