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Confidence Intervals and the Central Limit
Theorem

Ryan Miller
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Outline

1. The Normal distribution
2. Central Limit Theorem
3. Confidence intervals using the Central Limit theorem
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Introduction

Lately we’ve been focused on addressing the issue of sampling
variability using confidence intervals. The general procedure looks
like:

1) Use the sample data to find a point estimate of the population
parameter of interest

2) Bootstrap the sample data to mimic the process of sampling
from the population (ie: sampling variability)

3) Construct a confidence interval by using the bootstrap
distribution to estimate the point estimate’s standard error
(2-SE method) or by finding percentiles among the
bootstrapped estimates (percentile method)
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Generalizing the 2-SE method

I The 2-SE method works when the bootstrap distribution is
bell-shaped (due to the 68-95-99)
I Using the Normal Distribution, this approach can be

generalized to confidence intervals (of any confidence level):

Point Estimate± c ∗ SE

I Within the interval’s MOE, the multiplier, c, can be adjusted
to achieve any desired confidence level
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The Normal distribution

The Normal curve, or Normal probability function, is a
mathematical function that yields a bell-shaped distribution:

f (X ) = 1√
2πσ2

e−
(X−µ)2

2σ2

I The parameter µ is a constant that defines the center of the
bell-curve

I The parameter σ is a constant that defines the standard
deviation of the bell-curve (how peaked or flat it is)

I There infinitely many different Normal curves, one for each
combination of µ and σ
I We will describe them using the notation: N(µ, σ)
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The Normal distribution

If data follow a Normal distribution, the area under the
curve describes the likelihood you see a value within a particular range:
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Because the Normal probability function doesn’t have a closed-form
integral, we must use software to find these areas
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Practice

The Theoretical Distributions section of StatKey allows us to find
areas under various Normal curves:

1) Consider the Standard Normal distribution, or N(0,1), what
values define the middle 90% of this distribution?

2) Consider a N(10,5) distribution, what proportion of this
distribution is larger than 16?

https://www.lock5stat.com/StatKey/theoretical_distribution/theoretical_distribution.html#normal
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Practice (solution)

1) The values of -1.645 and +1.645 define the middle 90% of the
curve. This suggests we could use 1.645 as a multiplier on the
SE to form a 90% CI estimate (if the sampling distribution is
approximately Normal).

2) The area to the right of 16 is 0.115 on the N(10,5) curve. This
suggests there’s a 11.5% chance of seeing a value 16 or larger
if the data follows this distribution.
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Central Limit Theorem

The Central Limit Theorem (CLT) is a theoretical result that
establishes a Normal distribution (with known SE !) for a variety of
different sample estimates (provided a sufficient sample size):

Sample Estimate ∼ N
(
Population Parameter,SE

)
I The sample size needed for this theoretical result to hold differs

depending on the parameter we’re estimating
I For example, n = 30 is generally deemed sufficient when

estimating µ, a population mean
I CLT also provides a mathematical formula for an estimate’s SE

(see later slides)
I The details of this formula will differ depending on the

parameter we’re estimating
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Central Limit Theorem (one proportion)

For a single proportion, CLT states:

p̂ ∼ N
(
p,
√

p(1−p)
n

)

I This result implies that SE =
√

p̂(1−p̂)
n and a value of c from

the N(0,1) curve can be used to obtain a P% CI estimate of p
I The sample size condition to use this result is np̂ ≥ 10 and

n(1− p̂) ≥ 10
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Practice

A 2021 study looked at the true-positive rate (sensitivity) of an
Abbott Diagnostics rapid test for Covid-19 (one of the earliest such
tests). Of the 84 cases with symptomatic Covid-19 who took the
test, 38 had a “positive” result. Our goal is to estimate p, the
overall sensitivity of this test in the target population (ie: all
symptomatic Covid cases).

1) Verify that the conditions are met to use the CLT Normal
approximation to construct a confidence interval estimate

2) Find the values of p̂, its SE , and the value of c needed to
construct a 99% CI estimate of p

3) Calculate and interpret the 99% CI

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927591/


12/30

Practice (solution)

1) First, p̂ = 38/84 = 0.452. Then, np̂ = 84 ∗ 0.452 = 38 and
n(1− p̂) = 84 ∗ (1− 0.452 = 46. Because both are larger than
10, the CLT Normal approximation is reasonable.

2) p̂ = 38/84 = 0.452, SE =
√

0.452(1−0.452)
84 = 0.054, and

c = 2.576 (this defines the middle 99% of a N(0,1) curve)
3) The 99% CI is 0.452± 2.576 ∗ 0.054 = (0.313, 0.591). Our

sample suggests, with 99% confidence, that the true sensitivity
of the Abbott rapid test is somewhere between 31.3% and
59.1%
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Central Limit Theorem (two proportions)

For a difference of two proportions, CLT states:

p̂1 − p̂2 ∼ N
(
p1 − p2,

√
p1(1−p1)

n1 + p2(1−p2)
n2

)

I Using the sample proportions: p̂1 and p̂2, as well as their
denominators: n1 and n2 this result can be used to find the SE
necessary to construct a confidence interval estimate of p1 − p2

I The sample size condition to use this result is n1p̂1 ≥ 10,
n1(1− p̂1) ≥ 10, n2p̂2 ≥ 10, and n2(1− p̂2) ≥ 10
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Practice

The previously mentioned study also examined a test produced by
Siemens. Of 72 cases with symptomatic Covid-19 that took the
Siemens test, 39 had a “positive” result. Recall that 38 of 84
symptomatic cases tested positive on the Abbott test. Our goal is
estimate p1 − p2, the difference in sensitivity of these two tests (at
the population level)

1) Let p̂1 = 38/84 = 0.45 be the sample proportion for the
Abbott test, and p̂2 = 39/72 = 0.54 be the sample proportion
for the Siemens test. Find the SE for the difference in
proportions, p̂1 − p̂2.

2) Using the CLT Normal approximation, find and interpret a 95%
CI estimate for p1 − p2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927591/
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Practice (solution)

1) SE =
√

p1(1−p1)
n1 + p2(1−p2)

n2 =
√

0.45(1−0.45)
84 + 0.54(1−0.54)

72 =
0.08

2) Since c = 1.96, p̂1 − p̂2 = 0.54− 0.45 = −0.09, and
SE = 0.08, we calculate: −0.09± 1.96 ∗ 0.08 = (-0.247,
0.067). This represent the plausible range of differences in
sensitivity of these tests at the population level (estimated with
95% confidence). Because zero is included in this interval, it’s
plausible that the tests are actually no different.
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Central Limit Theorem (one mean)

For a single mean, CLT states:

x̄ ∼ N
(
µ, σ√

n

)
- σ is the standard deviation of the population
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William Gosset and the t-distribution

I Different from our examples involving proportions, the previous
CLT result involves a second unknown parameter, σ (the
population’s standard deviation)
I It seems natural to simply replace this with an estimate from

the sample, s, but this is what happens:

−1

0

1

0 50 100 150 200
Sample

S
am

pl
e 

m
ea

n 
w

ith
 9

5%
 C

I

200 different samples of n = 8 from a Standard Normal population



18/30

William Gosset and the t-distribution

I Clearly this 95% CI procedure is invalid - too many of these
intervals do not contain µ

I William Gosset, a chemist working for Guinness Brewing,
became aware of this issue in the 1890s
I His work evaluating the yields of different barley strains

frequently involved small sample sizes

I In 1906, Gosset took a leave of absence from Guinness to study
under Karl Pearson (developer of the correlation coefficient)
I Gosset discovered the issue was due to using s interchangeably

with σ
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William Gosset and the t-distribution

I Treating s as if it were a perfect estimate of σ results in a
systematic underestimation of the total amount of variability
involved in making the CI
I To account for the additional variability introduced by

estimating σ using s, a modified distribution that’s slightly more
spread out than the Standard Normal curve must be used

I Typically the inventor of a new method gets to name it after
themselves
I However, Gosset was forced to publish his new distribution

under the pseudonym “student” because Guinness didn’t want
it’s competitors knowing they employed statisticians!

I Student’s t-distribution is now among the most widely used
statistical results of all time
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The t-distribution

The t-distribution accounts the additional uncertainty in small
samples using a parameter known as degrees of freedom, or df :
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When estimating a single mean, df = n − 1
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The t-distribution
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The t-distribution
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Practice

While waiting at an airport, a traveler notices 6 flights to similar a
similar part of the country were delayed 6, 10, 13, 23, 45, 55
minutes. The mean delay in this sample was 25.33, with a sample
standard deviation of s = 20.2. Assuming these data are a
representative sample, answer the following:

1) How many degrees of freedom are involved when using the
t-distribution to form a CI estimate? What is the value of c
that should be used for 95% confidence?

2) What is the 95% CI estimate for the average delay of flights to
the part of the country this traveler is heading?
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Practice (solution)

1) Because n = 6, we’d use df = n − 1 = 5. For df = 5,
c = 2.571 defines the middle 95% of the distribution.

2) Point Estimate±MOE , Point estimate = x̄ = 25.33, Margin
of error = c ∗ SE = 2.571 ∗ 20.2√

6
I All together, 95% CI: 25.33± 2.571 ∗ 20.2√

6 = (4.1, 46.5)
I We are 95% confident the average delay is somewhere between

4.1 minutes and 46.5 minutes

Note: if we’d erroneously used a Normal model (instead of the
t-distribution), we’d get an interval that is much narrower (9.2,
41.5), but this interval wouldn’t have the confidence level we are
advertising (ie: it wouldn’t really be a 95% CI because it would miss
too often )
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When to use the t-distribution

I The t-distribution was designed for small, Normally distributed
samples
I However, it can also be reliably used on large samples,

regardless of their shape

Sample data are approximately Normal Sample data are non-Normal or skewed
Sample size is large (n ≥ 30) Use t-distribution Use t-distribution
Sample size is small (n < 30) Use t-distribution do not use t-distribution

I For small, non-Normal samples, more robust methods (such as
bootstrapping) should be used instead
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Central Limit Theorem (two means)

For a difference of two means, CLT states:

x̄1 − x̄2 ∼ N
(
µ1 − µ2,

√
σ21
n1 + σ22

n2

)

I Similar to applications estimating a single mean, the
t-distribution should be used when s1 and s2 are used as
estimates of σ1 and σ2
I Degrees of freedom is complicated, we’ll use the smaller of

n1 − 1 and n2 − 1 as a conservative approach
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Practice

To explore whether artificial light at night contributes to weight gain
(in g), researchers randomly assigned 18 young mice to live in lab
environments with either complete darkness or an artificial
nightlight during evening hours:

1) Compare the means and medians of each group as a crude
assessment of whether its reasonable to assume these data
came from a Normally distributed population

2) Find a 95% CI estimate for the difference in mean weight gain
experienced in each group (Light - Dark)
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Practice (solution)

1) Because the means and medians are reasonably close, we do
not have a sufficient reason to doubt Normality

2) First, we should use df = 7 because n2 − 1 is smaller than
n1 − 1. Thus, c = 2.365 is necessary for 95% confidence. Next,
SE =

√
2.9662/10 + 1.5572/8 = 1.09, therefore the 95% CI

estimate is (6.732− 4.114)± 2.365 ∗ 1.09 = (0.04, 5.20). With
95% confidence we can conclude that light-exposed mice
exhibit a larger weight gain, with the average difference being
between +0.04g and +5.20g relative to mice without exposure.
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Central Limit Theorem (summary)

Estimate Standard Error CLT Conditions

p̂
√

p(1−p)
n np ≥ 10 and n(1− p) ≥ 10

x̄ σ√
n normal population or n ≥ 30

p̂1 − p̂2

√
p1(1−p1)

n1
+ p2(1−p2)

n2
ni pi ≥ 10 and ni (1− pi ) ≥ 10 for i ∈ {1, 2}

x̄1 − x̄2

√
σ2
1

n1
+

σ2
2

n2
normal populations or n1 ≥ 30 and n2 ≥ 30

r

√
1−ρ2
n−2 normal populations or n > 30
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Factors impacting CI width (summary)

If all other factors are held constant, the table below summarizes
the impact of certain changes on the width of confidence intervals:

Change Impact on CI width
Increasing n decreases width (narrower CI)
Increasing confidence level increases width (wider CI)
Increasing SE increases width (wider CI)
Increasing number of bootstrap samples (if bootstrapping) no impact on width


