Measuring Association in Contingency Tables

Ryan Miller
\mathbf{X}

Outline

1. Contingency tables and probability
2. Study design, odds, and odds ratios

Introduction

- Lately we've been using the Chi-squared test of association to identify statistically significant relationships between two categorical variables
- This presentation will focus on how to report the clinical significance of the observed effect following a significant Chi-squared test

Contingency tables and probability

- Statisticians define the probability of an outcome as it's long-run relative frequency
- For example, the probability of a coin flip resulting in "heads" is 0.5 because over a very large number of coin flips you'll see "heads" half of the time

Contingency tables and probability

- Statisticians define the probability of an outcome as it's long-run relative frequency
- For example, the probability of a coin flip resulting in "heads" is 0.5 because over a very large number of coin flips you'll see "heads" half of the time
- Under this definition, it's reasonable to estimate an outcome's probability using the corresponding sample proportion (ie: \hat{p})

Diagnostic tests

Probability is often applied to contingency tables in applications involving diagnostic testing:

	Positive	Negative
Present	True Positive	False Negative
Absent	False Positive	True Negative

- Here, subjects are grouped according to the presence or absence of a disease or exposure (rows)
- Their outcome on a diagnostic test is recorded as either positive (suggesting they have the disease) or negative (suggesting they do not have the disease)

Diagnostic tests

Diagnostic tests:

	Positive	Negative
Present	True Positive	False Negative
Absent	False Positive	True Negative

- If the diagnostic test is effective, you'd expect the proportion of "true positives" in the "present" group to be high
- The probability corresponding to this proportion is the test's sensitivity

Diagnostic tests

Diagnostic tests:

	Positive	Negative
Present	True Positive	False Negative
Absent	False Positive	True Negative

- If the diagnostic test is effective, you'd expect the proportion of "true positives" in the "present" group to be high
- The probability corresponding to this proportion is the test's sensitivity
- You'd also expect the proportion of "true negatives" in the "absent" group to be high
- The probability corresponding to this proportion is the test's specificity

Practice

Radionuclide ventriculography (RNV) is a non-invasive approach to diagnosing coronary artery disease (CAD). Summarized below are data collected from a population at high risk of coronary artery disease:

	positive	negative
CAD Present	302	179
CAD Absent	80	372

1) Use StatKey to perform a Chi-squared test to determine if there's a statistically significant relationship between an individual's RNV result and the presence CAD.
2) Estimate the sensitivity and specificity of RNV, then comment upon it's clinical significance as a diagnostic test.

Practice (solution)

1) Using StatKey, $X^{2}=195.907$ and the p-value is nearly zero, so there is overwhelming statistical evidence of an association.
2) The sensitivity is $302 / 481=0.628$ and the specificity is $372 / 452=0.823$; so, while the relationship is highly statistically significant, the clinical significance might only be considered moderate

Epidemiology

Epidemiology is a branch of the biomedical sciences that focuses on relationships between health-related exposures and outcomes:

	Disease	Absent
Exposed		
Unexposed		

- It is common to compare risks of the disease among the exposed and unexposed
- "Risk" is defined as the estimated probability of having the disease given your exposure status (ie: row proportion)
- The exposed and unexposed are sometimes compared using risk differences or risk ratios (relative risk)

Epidemiology

Two important study designs used in epidemiology are:

1) Cohort studies - a single group is followed forward in time and both variables (exposure status and disease status) are directly observed
2) Case-control studies - separate groups of disease-positive (cases) and disease-negative (controls) are asked about their past exposures

Study design directly influences whether or not risks can be accurately estimated.

Case-control studies

A well-known case-control study published in 1969 examined the relationship between oral contraceptive (OC) use and the risk of blood clots. Data from the study is summarized in the table below:

	Cases (blood clots)	Controls (no clots)
Didn't use OC	42	145
Used OC	42	23

- Notice that 42 of 65 individuals (64.6\%) in this study that had used OC also had developed blood clots
- Based upon your prior knowledge, does this seem like an accurate estimate of the risk of developing blood clots for an OC user?

Case-control studies

- 64.6% is nowhere close to the actual probability of an OC user developing blood clots (the real probability is less than 1\%)
- In a case-control study, we cannot use conditional proportions to estimate the risk of an outcome given an exposure
- So, the risk difference and relative risk cannot be estimated in a case-control study!

Odds

- The odds ratio (OR) can be estimated in a case-control study
- Instead of a ratio of two probabilities (relative risk), the odds ratio is a ratio of two odds

Odds

- The odds ratio (OR) can be estimated in a case-control study
- Instead of a ratio of two probabilities (relative risk), the odds ratio is a ratio of two odds
- The odds of an event are the number of times that event occurs relative to the number of times it doesn't occur
- Suppose the probability of an event is 50%, the odds here are 1 (.5/.5), which people tend to express as " 1 to 1 odds"
- Suppose the probability of an event is 75%, the odds here are 3 (.75/.25), or " 3 to 1 odds"

Odds Ratios

Odds ratios have two major advantages:

1. Can be used in case-control studies
2. Symmetry - the OR for survival of cases relative to controls $=$ the OR for death of controls relative to cases

Practice

Below are the results of the OC case-control study:

	Cases (blood clots)	Controls (no clots)
Didn't use OC	42	145
Used OC	42	23

1) Find the odds of blood clots for OC users
2) Find the odds of blood clots for those not using OC
3) Find the odds ratio describing the risk of blood clots for OC users relative to non-users

Practice (solution)

1) The odds of blood clots were $1.83(42 / 23)$ for OC users
2) The odds of blood clots were $0.29(45 / 145)$ for those not using OC
3) The odds ratio for blood clots given OC use is $1.83 / 0.29=$ 6.31 ; so the odds of blood clots were 6.31 times higher for OC users relative to those not using OC

Comments - confidence intervals

- As with any measure of effect size, it's a generally a good idea to report it using a confidence interval estimate
- Calculating these intervals for a relative risk or odds ratio is beyond the scope of this class
- However, you should feel comfortable interpreting these intervals (for example, in the article review project)

Summary

This presentation covered several ways to describe the clinical significance of data displayed in a contingency table:

1) Sensitivity and specificity are used to describe the efficacy of a diagnostic test
2) Odds ratios are used to describe effect sizes in any type of study (with a particular advantage in case-control studies)
