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Standard Errors, Confidence Intervals, and
Bootstrapping

Ryan Miller



2/26

Outline

1. Standard deviation vs. standard error
2. Sampling distributions
3. Confidence intervals
4. Finding confidence intervals via bootstrapping
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Introduction

I Today’s focus will be on statistical methods for dealing with
variability

I Before getting into the details, it’s important to distinguish
between two distinct (but related) expressions of variability:
I Standard deviation - describes the variability of cases around

their mean
I Standard error - describes the variability of estimates around

the truth (ie: the population parameter of interest)
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Standard deviation vs. standard error

I Standard deviation can be directly calculated using the sample
data
I For example, we can use StatKey to find the standard deviation

of a numeric column of data

I Standard error is more challenging because we only have one
estimate
I That is, an entire numeric column of data produces only a

single mean/median (which serves as an estimate of the
population’s mean/median)
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Sampling variability

The scatterplot below depicts a population (N = 1000) where the
variables X and Y are not related (ie: ρ = 0):
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Sampling variability

Here is a random sample (n = 20) from this population (sampled
cases are colored in red), the sample correlation is r = −0.245:
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So, the sample data suggest a weak negative correlation despite
these variables having no correlation in the population
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Sampling variability

Shown below are another four random samples (each n = 20):
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Across these samples, the observed sample correlations range from
r = −0.31 (top right) to r = 0.35 (bottom right)
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Questions

Now consider a population where you do not know the true
correlation between X and Y :

1) If the you take a single sample and find a sample correlation of
r = 0.33, how confident can you be that X and Y are related
in the population?

2) If you take 100 different samples and find sample correlations
ranging from r = 0.25 to r = 0.35, how confident can you be
that X and Y are related in the population?

3) If you take 100 different samples and find sample correlations
ranging from r = −0.15 to r = 0.45, how confident can you be
that X and Y are related in the population?
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Answers

1) Not confident, it seems entirely possible that ρ = 0 but we
happened to see an unusual sample where r = 0.33 purely by
chance.

2) Confident, none of the samples had correlations near zero and
it’d be very unlikely for all 100 to have sample correlations this
high by chance.

3) Not confident, it seems like ρ = 0 is plausible since many of
the samples had correlations near zero.
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Sampling distributions

The distribution of all possible estimates that could be observed
when sampling is known as the sampling distribution:
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The standard deviation of the values depicted in a sampling
distribution is defined to be the standard error of the sample
estimate under consideration
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Bootstrapping

I Obtaining a sampling distribution can be difficult
I It’s not feasible to repeat a study hundreds times to assess the

amount of sampling variability

I Bootstrapping is an ingenious method designed to mimic the
process of repeating a study
I Instead of repeatedly collecting new samples from the

population, bootstrap samples are obtained by randomly
drawing cases from the original sample with replacement
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Bootstrapping

Notice how most bootstrap samples will contain replicates of
data-points that only appeared once in the original sample:

Statisticians have mathematically proven that bootstrapping
provides an accurate estimate of the true amount of sampling
variability in most applications
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Bootstrapping in StatKey

I A study conducted by Johns Hopkins University Hospital found
that 31 of 39 babies born in their facilities at 25 weeks
gestation (15 weeks early) went on to survive
I Our goal is to generalize these findings to other comparable

hospitals while being mindful of sampling variability

Using the “Bootstrap for a single proportion” menu of StatKey,
we’ll enter the “count” as 31 and the “sample size” as 39, then
generate 1000 bootstrap samples:

1) What does each dot depicted on the “Bootstrap dotplot”
represent?

2) How would you express the amount of sampling variability
present in this study?
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Bootstrapping in StatKey (solution)

1) Each dot represents the proportion of babies who survived in a
different bootstrap sample.

2) The standard error (which is the standard deviation of a sample
estimate) is approximately 0.066, this describes how much we’d
expect different sample estimates to deviate from their
expected value (on average).
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Interval estimation

Generally speaking, there are two different types of estimates (of a
population parameter) that statisticians derive and report using
sample data:

1) Point estimate - a single number that is the best guess for
what the population parameter is. For example, the sample
mean x̄ is a point estimate for the population’s mean, µ.

2) Interval estimate - a range of numbers that represent
plausible values of the population parameter. Interval estimates
usually have the form: Point Estimate ± Margin of Error
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Confidence intervals

I A confidence interval is an interval estimate whose margin of
error is based upon a procedure with a long-run “success rate”
known as a confidence level

I A 95% confidence interval was created using a procedure that
will succeed in containing the true population parameter in 95%
of different random samples (or study replications)

I The confidence level does not describe the likelihood that
particular interval succeeds, instead it describes the estimation
procedure’s long-run success rate
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Confidence intervals

Shown below are 95% CI estimates from 100 different random
samples (n = 20) drawn from a population with correlation of ρ = 0
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Notice that 5 of 100 samples resulted in a 95% CI that failed to
contain the true population-level correlation!
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Bootstrapping and the 2-SE method

A valid 95% CI requires a margin of error that calibrated to capture
the truth in 95% of different random samples:

Point Estimate ± Margin of Error

When the sampling distribution is symmetric and bell-shaped, the
95% rule produces valid 95% CIs:

Point Estimate ± 2 ∗ SE

I The standard error, or SE , can be found by bootstrapping
I Bootstrapping can also help us judge whether the sampling

distribution is likely to be bell-shaped
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Practice

A study conducted by Johns Hopkins University Hospital found that
31 of 39 babies born in their facilities at 25 weeks gestation (15
weeks early) went on to survive. Our goal is to estimate the
proportion of babies born under similar circumstances in similar
hospitals that will survive.

1) In this application we are trying to estimate p, a population
proportion, using p̂ = 31/39. Use StatKey to find the
bootstrapped standard error of p̂

2) Using the bootstrapped SE and the point estimate, construct a
95% confidence interval estimate for p

3) Interpret your 95% confidence interval estimate
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Practice (solution)

1) The bootstrapped SE is approximately 0.066
2) The 95% CI for p is p̂ ± 2 ∗ SE =

31/39 ± 2 ∗ 0.066 = (0.663, 0.927)
3) We can be 95% confident the survival rate for babies born in

comparable circumstances is between 0.663 and 0.927. This
represents a range of plausible values that we are confident will
contain the true proportion.
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The percentile bootstrap method

I If the sampling distribution is not bell-shaped, the 95% rule
might produce to invalid confidence intervals
I An invalid CI procedure systematically fails to capture the true

population parameter as often as the confidence level advertises
(ie: 95% of the time)

I The percentile bootstrap method does not assume any
distributional shape, and can be used in a wider variety of
situations
I Finding a 95% percentile bootstrap CI is done by excluding the

most extreme 2.5% of the bootstrap samples on each side of
the point estimate
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The percentile bootstrap method

The diagram below illustrates the percentile bootstrap method for a
95% CI estimate of a population’s mean:
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The percentile bootstrap method

The percentile bootstrap method can be used to produce intervals
with confidence levels other than 95%:
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Practice

A study conducted by Johns Hopkins University Hospital found that
31 of 39 babies born in their facilities at 25 weeks gestation (15
weeks early) went on to survive. Our goal is to estimate the
proportion of babies born under similar circumstances in similar
hospitals that will survive.

1) Use StatKey and the percentile bootstrap method to find the
95% CI estimate for p.

2) Compare this 95% CI with the interval we previously found
using the 2-SE method
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Practice (solution)

1) I got (0.641, 0.923) - your answer might be slightly different
(depending on your bootstrap samples)

2) Recall the 95% CI from the 2-SE method was (0.663, 0.927).
The percentile bootstrap interval is somewhat wider, which is
likely needed to achieve 95% confidence given the skew seen in
the bootstrap distribution.
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Conclusion

I Trends observed in sample data are not a perfect reflection of
the population we’re studying
I Confidence intervals provide a meaningful way to quantify

how much uncertainty exists when generalizing our sample
results to a broader population

I Confidence intervals take the form:
Point Estimate ± Margin of Error

I Bootstrapping is a method used to find the amount of
sampling variability present in our data
I If the bootstrap distribution is reasonably bell-shaped, we can

use the 2-SE method to come up with a 95% CI estimate
I More generally, we can use the percentile bootstrap method to

find confidence intervals for a variety of confidence levels and
sampling distribution shapes


