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Outline

1. The sample average as a random variable
2. Sampling distributions
3. Confidence intervals
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Introduction

I Lately we’ve been discussing random variables, which
represent the unknown numeric outcome of a random process

I Nearly all data is the result of a random process
I We don’t know which cases from the population will be sampled
I We don’t know which study participants will be randomized to

the treatment/control group
I Further, any descriptive summary of the sample data (ie:

means, proportions, correlations, etc.) is the observed outcome
of a random variable
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The Sample Average as a Random Variable

For a sample of n cases from a population, the sample average is
calculated:

x̄ = x1+x2+x3+...+xn
n

Notice how x̄ is the sum of many different randomly selected cases
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Proportions are Averages

I Now, consider a binary categorical variable
I Because binary variables involve only two categories, we can

map their outcomes to the numeric values of 0 and 1
I For example, consider a coin flip, we could map the outcome

“Heads” to “1” and the outcome “Tails” to “0”

I By coding the outcomes using 1s and 0s, we can see that the
sample proportion is also an average:

p̂ = 1+0+1+1+0+...+1
n

I If we mapped “Heads” to a value of “1”, p̂ would refer to the
proportion of heads in our sample
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The Distribution of the Sample Proportion

I According to the US Census, 27.5% of the adult population are
college graduates

I Randomly sampling n adults represents a random process
I The proportion of college graduates in a sample, p̂, is a random

variable

I Let’s explore some different outcomes of this random variable
for two different sampling protocols: random samples of size
n = 10, and random samples of size n = 100
I To begin, describe the sample space of p̂ in each scenario
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Random Samples of size n = 10

I For a single random sample of size n = 10, there are exactly 11
different sample proportions that could occur
I Thus, the sample space is: {0/10, 1/10, 2/10, . . . , 10/10}

I Rather doing probability calculations, we’ll simulate sampling
from the population (of size n = 10) to judge the likelihood of
each outcome
I StatKey allows us to quickly draw many samples

https://www.lock5stat.com/StatKey/sampling_1_cat/sampling_1_cat.html
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Random Samples of size n = 10

Due to the relatively small number of discrete outcomes, it’s
reasonable to use a table to convey a probability model for the
sample proportion:

Sample Proportion (n = 10) Probability
0/10 40/1000 = 0.04
1/10 150/1000 = 0.15
2/10 250/1000 = 0.25
3/10 270/1000 = 0.27
4/10 190/1000 = 0.19
... ...
10/10 0/1000 = 0
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Random Samples of size n = 100

I For n = 100, it’s more sensible to use a Normal probability
model

I StatKey can help us determine this model
I Any Normal model depends upon two parameters, the expected

value/mean (ie: µ) and the standard deviation (ie: σ)

I When the random variable our interest is a descriptive statistic,
the term standard error is used to describe model’s standard
deviation
I Thus, “standard deviation” is used to describe variability among

individual cases, while “standard error” describe the variability
of an estimate

https://www.lock5stat.com/StatKey/sampling_1_cat/sampling_1_cat.html
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Practice

Use StatKey to simulate drawing random samples of n = 200 from
this population (US adults, among whom 27.5% are college
graduates)

1) Is the standard error larger or smaller than it was for samples of
size n = 100? Was the change linear? (ie: is the SE half or
double what it previously had been?)

2) Use the mean and standard error as the basis for a Normal
model. What percentage of samples would you expect to have
between 26% and 29% colleges graduates?

3) Can you find an interval that you’d anticipate will contain the
sample proportions found in 90% of samples?
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Is simulation necessary?

The idea of reporting an interval estimate is very useful in describing
the uncertainty involved in random processes (ie: describing sample
data). However, there are two important challenges to consider:

1) We typically do not know anything about the population,
everything we know is based upon the sample data

2) It’s not always reasonable to do thousands of simulations
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John Kerrich

I John Kerrich, a South African mathematician, was visiting
Copenhagen in 1940

I When Germany invaded Denmark he was sent to an internment
camp, where he spend the next five years

I To pass time, Kerrich conducted experiments exploring
sampling and probability theory
I One of these experiments involved flipping a coin 10,000 times
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Kerrich’s Experiment and Probability

I We know that a fair coin shows “Heads” with a probability of
50%

I So, in a random sample of n coin flips, we’d expect roughly
even numbers of “Heads” and “Tails”
I We’ll explore the results of Kerrich’s experiment to see why the

sample average is so special
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Kerrich’s Results

Number of Tosses (n) Number of Heads Heads - 0.5*Tosses
10 4 -1
100 44 -6
500 255 5
1,000 502 2
2,000 1,013 13
3,000 1,510 10
4,000 2,029 29
5,000 2,533 33
6,000 3,009 9
7,000 3,516 16
8,000 4,034 34
9,000 4,538 38
10,000 5,067 67



15/48

Kerrich’s Results
It seems like the number of heads and tails are actually getting
further apart. . . could this be a fluke?
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Kerrich’s Experiment (repeated 50 times)
No, the phenomenon occurs systematically when repeating Kerrich’s
experiment
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Kerrich’s Experiment (sample proportions)
The sample proportion of heads behaves exactly as we’d expect, but
why?
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Central Limit Theorem

I Suppose X1,X2, . . . ,Xn are independent random variables with
a common expected value E (X ) and variance Var(X ) (see
previous notes for definitions of these two terms)

I Let X̄ denote the average of all n random variables, Central
Limit Theorem (CLT) states:

√
n
( X̄ − E (X )√

Var(X )

)
→ N(0, 1)

I Often it is more useful to think of CLT in the following way
(which abuses notation):

X̄ ∼ N
(
E (X ), SD(X)√

n

)
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Central Limit Theorem and Sample Proportions

I The sample proportion is comprised of n different binary
variables (taking on values of 1 and 0)
I Each one of these binary variables has the same expected value

and variance

I E (X ) = p ∗ 1 + 0 ∗ (1− p) = p
I Var(X ) = p ∗ (1− p)2 + (1− p) ∗ (0− p)2 = p ∗ (1− p)

I Thus, the sampling distribution of sample proportions is:

p̂ ∼ N(p,
√
p(1− p)/n)
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The Power of CLT

I Central Limit Theorem is one of the most important theoretical
results in all of statistics

I In real-world applications, it is nearly impossible to know the
probability distribution of something that is only observed once
(remember that real researchers can only afford to collect a
single sample)

I But by focusing on the sample average this isn’t an issue, as
CLT provides us the distribution of sample averages
I That is, we are able to use CLT to understand the sampling

variability of our study, despite only getting to see a single
sample!
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Example

I Let’s consider a random sample of n = 100 coin flips
I What proportion of heads might we expect? It’ll likely be close

to 50%, but we know there’s sampling variability, the question
is how much. . .

I Each coin flip is a random variable an expected value of 0.5, so
Central Limit Theorem tells us that proportion of heads in
random samples of n = 100 coin flips follows a Normal
distribution:

p̂ ∼ N(0.5,
√
0.5(1− 0.5)/100)
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Assumptions

Using the Central Limit theorem to determine the distribution of
sample averages is only appropriate when the following conditions
are met:

1) Independence - the cases in the sample (ie: the individual
contributions to the sample average) are not related to each
other

2) Large population - less that 10% of the population is being
sampled (otherwise removing the already sampled individuals
has too much of an impact on the probability of selection)

3) Large sample - np̂ ≥ 10 and n(1− p̂) ≥ 10

Most of the time, it’s only the third condition that is problematic
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Practice

Let’s revisit the selection of a random sample of size n = 100 from
the population of US adults (of which 27.5% are college graduates)

1) Use Central Limit theorem to come up with a Normal model
for the proportion of college graduates in the sample.

2) How does the standard error in this model compare to the
standard error we found by simulation? (recall it was
approximately 0.045)
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Statistical Inference

Recall that the fundamental goal of statisticians is to use
information from a sample to make reliable statements about a
population, a process known as statistical inference:

Image credit: http://testofhypothesis.blogspot.com/2014/09/the-sample.html

http://testofhypothesis.blogspot.com/2014/09/the-sample.html
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Point Estimation

I If a sampling protocol is unbiased, the sample average is a
sensible estimate of the population mean
I This is called a point estimate, referring to the fact that it is a

single value

I From our study of sampling distributions, we know that the
existence of sampling variability means a point estimate is
almost certainly wrong (at least to some degree)
I This suggests that we can more appropriately describe what we

think is true of the population by reporting an interval
estimate that accounts for sampling variability
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Point vs. Interval Estimation

To summarize:

I Point estimation uses sample data to produce a single “most
likely” estimate of a population characteristic, which will
almost always miss the target (at least by some degree)

I Interval estimation uses sample data to produce a range of
plausible estimates of a population characteristic, an approach
that has a much better chance at capturing the truth

An analogy:
Using only a point estimate is like fishing in a murky lake
with a spear. We can throw a spear where we saw a fish,
but we will probably miss. On the other hand, if we toss a
net in that area, we have a good chance of catching the
fish.
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Margin of Error

Most interval estimates have the form:

Point Estimate±Margin of Error

We often report these intervals using only their endpoints:

(Est−MOE,Est + MOE)

I We’d like the margin of error to be constructed in way that
carries a quantifiable claim of precision
I ie: 80% of the time an interval with this type of margin of error

will contain the population characteristic
I Without an accompanying claim regarding precision, reporting a

margin of error is not particularly useful
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Practice

So, what can we say about a population proportion, p, based upon
an observed sample proportion, p̂? Consider a representative sample
of 100 infants used to estimate the proportion of all babies who are
born prematurely

I True or false? “We observed p̂ = 0.14, so we know that 14%
of all babies are born prematurely”

I True or false? “We observed p̂ = 0.14, it’s probably true 14%
of all babies are born prematurely”

I True or false? “Although we don’t know p, if we attach a large
margin error to our point estimate,the interval estimate
14%± 10% = (4%, 24%) probably contains p”
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Confidence intervals

I A confidence interval is an interval estimate whose margin of
error is based upon a procedure with a long-run “success rate”
known as a confidence level

I A 95% confidence interval was created using a procedure that
will succeed in containing the true population parameter in 95%
of different random samples (or study replications)

I The confidence level does not describe the likelihood that
particular interval succeeds, instead it describes the estimation
procedure’s long-run success rate
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Confidence intervals

Shown below are 95% CI estimates from 100 different random
samples (n = 20) drawn from a population with correlation of ρ = 0
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Notice that 5 of 100 samples resulted in a 95% CI that failed to
contain the true population-level correlation!
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Confidence Intervals and the Normal model

Under a Normal probability model, confidence intervals can be
found via:

Point Estimate± c ∗ SE

I “c” is a percentile of the Standard Normal distribution that is
used to calibrate the interval (sometimes called z∗)
I For example, c = 1.96 is used for a 95% CI

I SE is found using the results of the Central Limit theorem
I For example, for the sample proportion p̂ = 12/30 = 0.4,

SE =
√

0.4∗(1−0.4)
30 = 0.09
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Practice

A 2021 study looked at the true-positive rate (sensitivity) of an
Abbott Diagnostics rapid test for Covid-19 (one of the earliest such
tests). Of the 84 cases with symptomatic Covid-19 who took the
test, 38 had a “positive” result. Our goal is to estimate p, the
overall sensitivity of this test in the target population (ie: all
symptomatic Covid cases).

1) Verify that the conditions are met to use the CLT Normal
approximation to construct a confidence interval estimate

2) Find the values of p̂, its SE , and the value of c needed to
construct a 99% CI estimate of p

3) Calculate and interpret the 99% CI

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927591/
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Practice (solution)

1) First, p̂ = 38/84 = 0.452. Then, np̂ = 84 ∗ 0.452 = 38 and
n(1− p̂) = 84 ∗ (1− 0.452 = 46. Because both are larger than
10, the CLT Normal approximation is reasonable.

2) p̂ = 38/84 = 0.452, SE =
√

0.452(1−0.452)
84 = 0.054, and

c = 2.576 (this defines the middle 99% of a N(0,1) curve)
3) The 99% CI is 0.452± 2.576 ∗ 0.054 = (0.313, 0.591). Our

sample suggests, with 99% confidence, that the true sensitivity
of the Abbott rapid test is somewhere between 31.3% and
59.1%
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CLT Standard Errors

Without getting into the details, the CLT standard error formulas
for commonly used descriptive statistics are shown below:

I Single proportion, p̂, SE =
√

p(1−p)
n

I works well when n ∗ p ≥ 10 and n ∗ (1− p) ≥ 10
I Difference in proportions, p̂1 − p̂2, SE =

√
p1(1−p1)

n1
+ p2(1−p2)

n2
I works well when ni ∗ pi ≥ 10 and ni ∗ (1− pi ) ≥ 10 for both

groups
I Single mean, x̄ , SE = σ√

n
I works well when n ≥ 30

I Difference in means, x̄1 − x̄2, SE =
√

σ2
1

n1
+ σ2

2
n2

I works well when ni ≥ 30 for both groups
I Correlation coefficient, r , SE =

√
1−ρ2

n−2
I works well when n ≥ 30

Note: using any of these formulas requires the replacement of
unknown population parameters.
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Practice #1

The previously mentioned study also examined a test produced by
Siemens. Of 72 cases with symptomatic Covid-19 that took the
Siemens test, 39 had a “positive” result. Recall that 38 of 84
symptomatic cases tested positive on the Abbott test. Our goal is
estimate p1 − p2, the difference in sensitivity of these two tests (at
the population level)

1) Let p̂1 = 38/84 = 0.45 be the sample proportion for the
Abbott test, and p̂2 = 39/72 = 0.54 be the sample proportion
for the Siemens test. Find the SE for the difference in
proportions, p̂1 − p̂2.

2) Find and interpret the 95% CI estimate of p1 − p2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927591/
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Practice #1 (solution)

1) SE =
√

p1(1−p1)
n1

+ p2(1−p2)
n2

=
√

0.45(1−0.45)
84 + 0.54(1−0.54)

72 =
0.08

2) Since c = 1.96, p̂1 − p̂2 = 0.54− 0.45 = −0.09, and
SE = 0.08, we calculate: −0.09± 1.96 ∗ 0.08 = (-0.247,
0.067). This represent the plausible range of differences in
sensitivity of these tests at the population level (estimated with
95% confidence). Because zero is included in this interval, it’s
plausible that the tests are actually no different.
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Practice #2

A random sample of n = 33 adult women found a correlation
coefficient of r = 0.68 between bodyweight and resting metabolic
rate.

1) Can you be statistically confident that bodyweight is resting
metabolic rate using only the point estimate?

2) Find and interpret the 99% CI estimate of ρ (the
population-level correlation)
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Practice #2 (solution)

1) No, even though a strong correlation was seen in the sample,
the data consist of only 33 cases, so that correlation might be
explained by sampling variability

2) c = 2.576 for 99% confidence and SE =
√

1−0.682

30−2 = 0.139; so
the 99% CI is 0.68± 2.576 ∗ 0.139 or (0.322, 1.00) - note that
we’d want to cap the upper endpoint at 1.00 (as that’s the
maximum a correlation coefficient can be)
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William Gosset and the t-distribution

I Using the CLT to calculate confidence intervals for quantitative
outcomes (means, differences in means) requires an estimate of
a second unknown population parameter (σ)
I If we use the corresponding sample estimate, s, this is what

happens:
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200 different samples of n = 8 from a Standard Normal population
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William Gosset and the t-distribution

I Clearly the prior 95% CI procedure is invalid - too many of the
intervals didn’t contain µ

I William Gosset, a chemist working for Guinness Brewing,
became aware of this issue in the 1890s
I His work evaluating the yields of different barley strains

frequently involved small sample sizes

I In 1906, Gosset took a leave of absence from Guinness to study
under Karl Pearson (developer of the correlation coefficient)
I Gosset discovered the issue was due to using s interchangeably

with σ
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William Gosset and the t-distribution

I Treating s as if it were a perfect estimate of σ results in a
systematic underestimation of the total amount of variability
involved in making the CI
I To account for the additional variability introduced by

estimating σ using s, a modified distribution that’s slightly more
spread out than the Standard Normal curve must be used

I Typically the inventor of a new method gets to name it after
themselves
I However, Gosset was forced to publish his new distribution

under the pseudonym “student” because Guinness didn’t want
it’s competitors knowing they employed statisticians!

I Student’s t-distribution is now among the most widely used
statistical results of all time
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The t-distribution

The t-distribution accounts the additional uncertainty in small
samples using a parameter known as degrees of freedom, or df :
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When estimating a single mean, df = n − 1
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The t-distribution
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The t-distribution
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Practice

While waiting at an airport, a traveler notices 6 flights to similar a
similar part of the country were delayed 6, 10, 13, 23, 45, 55
minutes. The mean delay in this sample was 25.33, with a sample
standard deviation of s = 20.2. Assuming these data are a
representative sample, answer the following:

1) How many degrees of freedom are involved when using the
t-distribution to form a CI estimate? What is the value of c
that should be used for 95% confidence?

2) What is the 95% CI estimate for the average delay of flights to
the part of the country this traveler is heading?
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Practice (solution)

1) Because n = 6, we’d use df = n − 1 = 5. For df = 5,
c = 2.571 defines the middle 95% of the distribution.

2) Point Estimate±MOE , Point estimate = x̄ = 25.33, Margin
of error = c ∗ SE = 2.571 ∗ 20.2√

6
I All together, 95% CI: 25.33± 2.571 ∗ 20.2√

6 = (4.1, 46.5)
I We are 95% confident the average delay is somewhere between

4.1 minutes and 46.5 minutes

Note: if we’d erroneously used a Normal model (instead of the
t-distribution), we’d get an interval that is much narrower (9.2,
41.5), but this interval wouldn’t have the confidence level we are
advertising (ie: it wouldn’t really be a 95% CI because it would miss
too often )
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When to use the t-distribution

I The t-distribution was designed for small, Normally distributed
samples
I However, it can also be reliably used on large samples,

regardless of their shape

Sample data are approximately Normal Sample data are non-Normal or skewed
Sample size is large (n ≥ 30) Use t-distribution Use t-distribution
Sample size is small (n < 30) Use t-distribution do not use t-distribution

I For small, non-Normal samples, more robust methods (such as
bootstrapping) should be used instead
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Conclusion

I Confidences intervals are preferred over point estimates
because they address the question of statistical uncertainty
that is inherent to random processes (such as data collection,
random assignment, etc.)

I A confidence interval provides a plausible range of values for an
unknown population parameter
I The confidence level describes the success rate of the method

used to calculate the interval if it were applied to many random
samples

I To find a confidence interval you need three components:
I A point estimate (calculated from the sample data)
I The SE of that estimate (found using a CLT formula)
I A calibration constant, c (found using a Normal distribution or

a t-distribution)
I The t-distribution should be used for a single mean or a

difference in means


