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Outline

1. Approximating the binomial distribution
2. The Normal Curve
3. Applications of the Normal Model



3/23

Introduction

I Previously, we worked with an example involving the sampling
of n = 2 socks from a large population where 30% of socks
were black
I We used X to denote the number of black socks in our sample,

and we wrote out a probability model for X

I We also saw that X could represented by a mathematical
function (the binomial distribution function):

P(X = x) =
(

n
x

)
px (1− p)n−x

This function is useful, because it can be easily applied to larger
samples. . .
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Introduction (cont.)

Consider a sample of n = 30 socks:
x 0 1 2 . . . 30
P(X = x)
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Visually, we can graph these probabilities:
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The Normal Curve

The Normal distribution is perhaps the most widely used
probability model:
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Continuous Random Variables

I The Normal probability model is defined by the curve:

f (X ) = 1√
2πσ2

e− (X−µ)2

2σ2

I The parameter µ is a constant that defines the expected value
of the bell-curve

I The parameter σ is a constant that defines the standard
deviation of the bell-curve (how tall or flat it appears)

I There infinitely many different Normal curves, one for each
combination of µ and σ
I We will use the notation: N(µ, σ), for example N(70, 2.5)

(adult male heights)
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Normal Probability Calculations

I Under a continuous probability model, the probability of any
single value of X is zero (as there are infinitely many possible
values)
I Thus, probabilities only make sense for intervals, for example we

can represent P(X > 72) using the shaded area shown below:
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Normal Curves in StatKey

I To work with the Normal Curve, we’ll utilize a new StatKey
menu: StatKey Normal Curve

I As practice, verify that P(X > 72) = 0.212 for a N(70, 2.5)
distribution

http://www.lock5stat.com/StatKey/theoretical_distribution/theoretical_distribution.html#normal
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Normal Approximation of the Binomial

I Previously, we briefly saw how the expected value of a binomial
random variable was E (X ) = n ∗ p

I Similarly, the standard deviation of a binomial random variable
can be calculated using a mathematical formula,
SD(X ) =

√
n ∗ p ∗ (1− p)

I Thus, sampling n = 30 socks from a large population with 30%
black socks can be approximated by a N(9, 2.51) curve:
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Practice

40-weeks is considered a full-term pregnancy, but babies born
prematurely often survive. For example, babies born at 24-weeks are
estimated to have 60% survival rate.

1) Consider a hospital system that delivers n = 50 babies aged
24-weeks every year. Let X denote the number of these babies
who survive. What are the expected value and standard
deviation of X?

2) Use StatKey to display a Normal Model of this scenario. Then,
use this model to estimate the probability that fewer than half
of these babies survive (ie: 24 or fewer survivors)
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Practice (solution)

1) E (X ) = 50 ∗ 0.6 = 30, SD(X ) =
√
50 ∗ 0.6 ∗ 0.4 = 3.464

2) Using a N(30, 3.464) model, P(X ≤ 24) = 0.042
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Standardization

I Historically, statisticians wanted to avoid the possibility of
infinitely many different probability models
I This led them to standardize their data onto single, unit-free

scale

I Z -scores are perhaps the most common form of standardization
I Consider a random variable X and a Normal model defined by µ

and σ
I Under this model, the Z -score of X is calculated:

Z = X−µ
σ
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Z-scores

I A Z -score can be interpreted as how many standard deviations
an observed outcome is above or below its expected value

I For example, suppose X is a random variable from a
N(µ = 70, σ = 2.5) distribution and we observe x = 72
I This outcome leads to the Z -score: z = (72− 70)/2.5 = 0.8
I Therefore, a height of 72 inches is 0.8 standard deviations above

what is expected (at least according to this probability model)
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The Standard Normal Distribution

I Standardization enables us to use the Standard Normal
distribution as a probability model in a wide variety of settings

I For example, suppose adult male heights follow a Normal
distribution centered at 70 inches with a standard deviation of
2.5 inches
I This means, X ∼ N(70, 2.5)
I After standardization, Z = X−70

2.5 ∼ N(0, 1)
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The Standard Normal Distribution
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Example

Let X denote the height of a randomly chosen adult male, and
assume the probability model X ∼ N(70, 2.5)

1) Find the probability that this male’s height is between 5’10 and
6’0 directly from the given Normal probability model

2) Find this same probability using Z -scores and the Standard
Normal distribution
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Example (solution)

Using Statkey:

1) On the N(70,2.5) curve, the area to the left of 70 inches (5’10)
is 0.5, while the area to the left of 72 inches (6’0) is 0.788;
thus, there is a 28% probability of a random adult male being
between 5’10 and 6’0 under this model

2) To use the Standard Normal model, we’d the same thing, but
with the preliminary step of calculating Z -scores. The Z -score
for 70 inches is 0, while the Z -score for 72 increases is 0.8. On
the Standard Normal curve, the area to the left of 0 is 0.5,
while the area to the left of 0.8 is 0.788; again we find a 28%
probability that a random adult male is between 5’10 and 6’0
under this model
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How Accurate is the Normal Model?

I In this example, we’ll look at the sale prices of all homes in
Iowa City, IA between 2005-2008
I The mean sale price was $180.1k, and the standard deviation

was $90.65k

Home Sales in Iowa City (2005−2008)
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Applying the Normal Model

I Let X be a random variable denoting the sale price of a
randomly selected home

I Because X is a continuous random variable, it seems
reasonable to take the mean and standard deviation in our
dataset and use N(180.1, 90.65) as a probability model for X
I How would you use this model to estimate P(X ≥ $400k)?



20/23

Applying the Normal Model

I Using StatKey, we could directly input our mean and standard
deviation then calculate this right-tail probability to be 0.0076

I We also could standardize $400k into a Z-score of
z = 400− 180.190.65 = 2.426 and use the Standard Normal
distribution to arrive at the same estimated probability

I However, both calculations assume the Normal model is a good
representation of these data (or the population they represent)
I But is it?
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Example

I The empirical probability of a randomly selected home selling
for more than $400k is 0.0283 (22 of 777 homes)
I This discrepancy might not seem like much, but this is 3.7

times larger than what the Normal model suggested! (0.0076)

Home Sales in Iowa City (2005−2008)
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Appropriateness of the Normal Model

I In this application, the distribution of the data doesn’t match
the shape of the normal curve

I That is, even if we center and scale our normal model
appropriately (ie: good choices of µ and σ), the model is
incapable of representing the underlying distribution of these
data

I As an aside, notice these data contain n = 777 cases
I A common misconception is that larger amounts of data tend to

be normally distributed (they don’t)
I That said, more data will improve the Normality of a special

random variable, the sample average
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Conclusion

I The Normal distribution provides a useful probability model for
many, but not all, continuous random variables
I Proper application of the Normal model requires the

specification the bell-curve’s center, µ, and it’s spread, σ

I Variables with skewed distributions cannot be appropriately
modeled by the normal curve, even when using reasonable
values of µ and σ

I In general, having more data does not make a random variable
more normally distributed
I However, for the sample average (rather than the data-points

themselves), having more data does have an important impact
I We’ll explore the distribution of sample averages next week
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