Probability (part 1)

Ryan Miller

- 1. Sources of uncertainty
- 2. Definitions
- 3. Unions and intersections

In high-quality research, it's common to encounter *randomness* in two areas:

- 1) *Random sampling* helps ensure that our sample data are representative of the population we're studying
- 2) Random assignment protects us against confounding variables

An important consequence of randomness is that the trends in our sample data might not identically mirror those within the broader population

- The Sampling Distribution for a Mean section of StatKey comes pre-loaded with data on the contracts of all 877 MLB players during the 2019 season
- If we only wanted to draw conclusions about this season, we might consider these data to be a population
- When using a random sample to study this population, notice how the sample mean is unlikely to be identical to the population's mean due to random chance

A trial is a single instance of a random process

Every trial results in an outcome

A trial is a single instance of a random process

- Every trial results in an **outcome**
- For example, consider the selection of one member of the Xavier faculty (population) into a sample
 - This selection represents one trial of a random process
 - A possible outcome would be "Ryan Miller"
 - Note that we could measure things differently, so another outcome might be "Math Department"

A trial is a single instance of a random process

- Every trial results in an **outcome**
- For example, consider the selection of one member of the Xavier faculty (population) into a sample
 - This selection represents one trial of a random process
 - A possible outcome would be "Ryan Miller"
 - Note that we could measure things differently, so another outcome might be "Math Department"
- The collection of all possible outcomes is called the sample space
 - For example, the sample space of Xavier faculty would be a list of hundreds of names
 - In the special case of random sampling, each outcome in the sample space is equally likely

- Statisticians generally to focus on events, which are combinations of one or more observed outcomes
- Below are a couple examples of events for a single trial in the Xavier faculty example:
 - The faculty member is younger than 40 and teaches math
 - The faculty member teaches math or teaches computer science

- Probability is way of quantifying the likelihood of observing a particular event
 - To begin, consider a single coin flip. Everyone agrees the probability of a fair coin landing "heads" is 1/2, but why?

 Probability is way of quantifying the likelihood of observing a particular event

- To begin, consider a single coin flip. Everyone agrees the probability of a fair coin landing "heads" is 1/2, but why?
- Frequentist statisticians define probability as the long-run proportion of an event occurring
 - Thus, P(Heads) = 0.5 means that if we conducted many trials (different coin flips) we'd expect the event "Heads" to be observed in half of them
 - Alternatively, this random process has two outcomes that are equally likely, so 1/2 = 0.5 must be the probability of "Heads"

- Probability is a long-run proportion, so the probability of any event *must* be between 0 and 1
 - Please do not ever report a probability outside of this range on an exam or homework assignment (if necessary, leave your incorrect work and don't provide a final answer)

Because probabilities are just long-run relative frequencies (proportions), it's possible to estimate them using data
For example, Steph Curry's career free through percentage is approximately 90%, so we might estimate P(Make) = 0.9 for his next attempt

- Because probabilities are just long-run relative frequencies (proportions), it's possible to estimate them using data
 - For example, Steph Curry's career free through percentage is approximately 90%, so we might estimate P(Make) = 0.9 for his next attempt
- This is called an *empirical probability*, it is different from a *theoretical probability* like P(Heads) = 0.5
 - Empirical probabilities are *estimated* using a finite amount of data
 - Theoretical probabilities are *governed* by the nature of the random process

According to the US Census, the current racial composition of the United States is 61.5% Non-Hispanic White, 17.6% Hispanic (of any race), 12.3% Black, 5.3% Asian, 0.7% Native American, and 2.6% other races. For the questions that follow, consider the race of a *randomly selected individual* from this population.

- 1) In words, briefly describe what a *trial* refers to in this example.
- 2) What is the sample space of the trial you described in #1?
- 3) What is *P*(Asian)?

- 1) A trial is the random selection of an individual
- 2) The space is the collection of all possible racial/ethnic categories (Non-Hispanic White, Hispanic, Black, Asian, Native American, and Other)

3)
$$P(Asian) = 0.053$$

Unions and Intersections

- As previously mentioned, an *event* is a combinations of *one or* more outcomes
 - There are two ways to combine multiple outcomes, unions and intersections

Unions and Intersections

- As previously mentioned, an *event* is a combinations of *one or more outcomes*
 - There are two ways to combine multiple outcomes, unions and intersections
- Intersection refers to two (or more) outcomes simultaneously occurring
 - \blacktriangleright Intersections are expressed using "and" or the symbol \cap
 - Consider rolling a six-sided die, P(Five and Six) = P(Five ∩ Six) = 0
 - Alternatively,

 $P(\text{Five and Odd Number}) = P(\text{Five} \cap \text{Odd Number}) = 1/6$

Unions and Intersections

- As previously mentioned, an *event* is a combinations of *one or* more outcomes
 - There are two ways to combine multiple outcomes, unions and intersections
- Intersection refers to two (or more) outcomes simultaneously occurring
 - Intersections are expressed using "and" or the symbol \cap

Consider rolling a six-sided die, P(Five and Six) = P(Five ∩ Six) = 0

Alternatively,

 $P(\text{Five and Odd Number}) = P(\text{Five} \cap \text{Odd Number}) = 1/6$

Union refers to at least one of the specified outcomes occurring

- \blacktriangleright Union are expressed using "or" or the symbol \cup
- Consider rolling a six-sided die, P(Five or Six) = P(Five ∪ Six) = 2/6 = 1/3

Alternatively, $P(\text{Five or Odd Number}) = P(\text{Five} \cup \text{Odd Number}) = 3/6 = 1/2$

- The probability of the union of all outcomes in a sample space is 1
 - If we flip a single coin: P(Heads or Tails) = 1
 - If we randomly sample letter grades on an exam: P(A or B or C or D or F) = 1

When all outcomes are equally likely, a strategy for finding the probability of a union or an intersection is to write out the entire sample space and count the outcomes that satisfy the event of interest. We'll do an example using a standard deck of 52 cards:

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	÷.	² ↔ + ;	* *	** * * *:	** * * * *;	** ** **;	1		÷.	**** ***	8	à .	8
Diamonds	٠.	₹ ◆ ◆ ₽	* • • • ;	²◆ ◆ ◆ ◆:	2	€••• ••• ••;					: د	€	8
Hearts	••,	₹ ¥ ▲ :	2 ¥ ¥ A 2	** * • •;	₩ ₩ ₩ ₩ ₩:	5₩ ₩ ₩ ₩ ▲ ▲;					3,	€	
Spades	°♠,	* * * :	* • • • ;	** * * *;	24 4 4 4 4;	***				"	۲ <mark>.</mark>	€.	

For the questions that follow, consider a randomly selected card from a standard deck:

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	°.	² . • :	* * * * :	** * *;	².** .* .**;	** * * * * *;	1	·***		**** ***	8	° 2	8
Diamonds	٠.	₹ ◆ • ₽	2 + + + 2	2◆ ◆ ◆ ◆:	[↓ ↓ ↓ ↓ ↓]	€• • • • • •;					·	€	.
Hearts	••,	••	2 ¥ ¥ 4 2	₩ ₩ ▲ ▲;	₩ ₩ ₩ ₩ ₩2	5₩ ₩ ₩ ₩ ▲ ▲;				***	έ,	€.	2
Spades	۴.,	2 • • :	2 ÷ • • ;	24 4 • •;	24 4 4 4 47	14 4 4 4 4 4;		14 4 444 9 9 9	· • • • • •	**** ***	<mark>ہ ک</mark>	€.	2

- 1) What is *P*(Heart)?
- 2) What is $P(\text{Heart} \cap \text{Queen})$?
- 3) What is $P(\text{Heart} \cup \text{Queen})$?

To begin, realize that all 52 cards in the sample space are equally likely.

- 1) Since 1/4 of the cards are hearts, P(Heart) = 0.25
- 2) Since only 1 of the 52 cards is the queen of hearts, $P(\text{Heart} \cap \text{Queen}) = 1/52 = 0.019$
- 3) There are 13 hearts (including the queen of hearts) and an additional 3 questions, so the probability is 16/52 = 0.308

- This presentation introduced basic definitions and concepts related to probability
 - random process -> trial -> outcome -> event -> probability -> union or intersection
- The next presentation will cover more advanced probability, focusing on rules used to calculate the probabilities of my complicated events

