Probability (part 1)

Ryan Miller

Outline

1. Sources of uncertainty
2. Definitions
3. Unions and intersections

Introduction

In high-quality research, it's common to encounter randomness in two areas:

1) Random sampling helps ensure that our sample data are representative of the population we're studying
2) Random assignment protects us against confounding variables

An important consequence of randomness is that the trends in our sample data might not identically mirror those within the broader population

Example

- The Sampling Distribution for a Mean section of StatKey comes pre-loaded with data on the contracts of all 877 MLB players during the 2019 season
- If we only wanted to draw conclusions about this season, we might consider these data to be a population
- When using a random sample to study this population, notice how the sample mean is unlikely to be identical to the population's mean due to random chance

Probability Definitions

- A trial is a single instance of a random process
- Every trial results in an outcome

Probability Definitions

- A trial is a single instance of a random process
- Every trial results in an outcome
- For example, consider the selection of one member of the Xavier faculty (population) into a sample
- This selection represents one trial of a random process
- A possible outcome would be "Ryan Miller"
- Note that we could measure things differently, so another outcome might be "Math Department"

Probability Definitions

- A trial is a single instance of a random process
\rightarrow Every trial results in an outcome
- For example, consider the selection of one member of the Xavier faculty (population) into a sample
- This selection represents one trial of a random process
- A possible outcome would be "Ryan Miller"
- Note that we could measure things differently, so another outcome might be "Math Department"
- The collection of all possible outcomes is called the sample space
- For example, the sample space of Xavier faculty would be a list of hundreds of names
- In the special case of random sampling, each outcome in the sample space is equally likely

Probability Definitions

- Statisticians generally to focus on events, which are combinations of one or more observed outcomes
- Below are a couple examples of events for a single trial in the Xavier faculty example:
- The faculty member is younger than 40 and teaches math
- The faculty member teaches math or teaches computer science

Probability Definitions

- Probability is way of quantifying the likelihood of observing a particular event
- To begin, consider a single coin flip. Everyone agrees the probability of a fair coin landing "heads" is $1 / 2$, but why?

Probability Definitions

- Probability is way of quantifying the likelihood of observing a particular event
- To begin, consider a single coin flip. Everyone agrees the probability of a fair coin landing "heads" is $1 / 2$, but why?
- Frequentist statisticians define probability as the long-run proportion of an event occurring
- Thus, $P($ Heads $)=0.5$ means that if we conducted many trials (different coin flips) we'd expect the event "Heads" to be observed in half of them
- Alternatively, this random process has two outcomes that are equally likely, so $1 / 2=0.5$ must be the probability of "Heads"

Valid Probabilities

- Probability is a long-run proportion, so the probability of any event must be between 0 and 1
- Please do not ever report a probability outside of this range on an exam or homework assignment (if necessary, leave your incorrect work and don't provide a final answer)

Empirical Probabilities

- Because probabilities are just long-run relative frequencies (proportions), it's possible to estimate them using data
- For example, Steph Curry's career free through percentage is approximately 90%, so we might estimate P (Make) $=0.9$ for his next attempt

Empirical Probabilities

- Because probabilities are just long-run relative frequencies (proportions), it's possible to estimate them using data
- For example, Steph Curry's career free through percentage is approximately 90%, so we might estimate $P($ Make $)=0.9$ for his next attempt
- This is called an empirical probability, it is different from a theoretical probability like $P($ Heads $)=0.5$
- Empirical probabilities are estimated using a finite amount of data
- Theoretical probabilities are governed by the nature of the random process

Example \#1

According to the US Census, the current racial composition of the United States is 61.5% Non-Hispanic White, 17.6% Hispanic (of any race), 12.3% Black, 5.3% Asian, 0.7% Native American, and 2.6\% other races. For the questions that follow, consider the race of a randomly selected individual from this population.

1) In words, briefly describe what a trial refers to in this example.
2) What is the sample space of the trial you described in \#1?
3) What is $P($ Asian $)$?

Example \#1 (solutions)

1) A trial is the random selection of an individual
2) The space is the collection of all possible racial/ethnic categories (Non-Hispanic White, Hispanic, Black, Asian, Native American, and Other)
3) $P($ Asian $)=0.053$

Unions and Intersections

- As previously mentioned, an event is a combinations of one or more outcomes
- There are two ways to combine multiple outcomes, unions and intersections

Unions and Intersections

- As previously mentioned, an event is a combinations of one or more outcomes
- There are two ways to combine multiple outcomes, unions and intersections
- Intersection refers to two (or more) outcomes simultaneously occurring
- Intersections are expressed using "and" or the symbol \cap
- Consider rolling a six-sided die, $P($ Five and Six $)=P($ Five \cap Six $)=0$
- Alternatively, $P($ Five and Odd Number $)=P($ Five \cap Odd Number $)=1 / 6$

Unions and Intersections

- As previously mentioned, an event is a combinations of one or more outcomes
- There are two ways to combine multiple outcomes, unions and intersections
- Intersection refers to two (or more) outcomes simultaneously occurring
- Intersections are expressed using "and" or the symbol \cap
- Consider rolling a six-sided die, $P($ Five and Six $)=P($ Five \cap Six $)=0$
- Alternatively, $P($ Five and Odd Number $)=P($ Five \cap Odd Number $)=1 / 6$
- Union refers to at least one of the specified outcomes occurring
- Union are expressed using "or" or the symbol \cup
- Consider rolling a six-sided die, $P($ Five or Six $)=P($ Five \cup Six $)=2 / 6=1 / 3$
- Alternatively, $P($ Five or Odd Number $)=P($ Five \cup Odd Number $)=3 / 6=1 / 2$

Sample Spaces, Unions, and Intersections

- The probability of the union of all outcomes in a sample space is 1
- If we flip a single coin: P (Heads or Tails) $=1$
- If we randomly sample letter grades on an exam: $P(\mathrm{~A}$ or B or C or D or F$)=1$

Example \#2

When all outcomes are equally likely, a strategy for finding the probability of a union or an intersection is to write out the entire sample space and count the outcomes that satisfy the event of interest. We'll do an example using a standard deck of 52 cards:

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	$\%$						$\stackrel{*}{*}+$	**	率	等	${ }^{\text {8* }}$	*	8.
Diamonds	-	-					$\div \div$				$8 .$	${ }_{\circ}$	\%
Hearts	\checkmark	-	:		"*	\# \%	\%	\%			\%	20	8
Spades	\wedge		$:$				$\therefore \therefore$	$\therefore \%$	8	*	8	${ }^{2}$	8,

Example \#2 (cont)

For the questions that follow, consider a randomly selected card from a standard deck:

Suit	Ace	2	3	4	5	6	7	8	9	10	Jack	Queen	King
Clubs	*		*		$4 *$	*	\approx	$\%$	埌	N		\cdots	*
Diamonds	-	.	:		\because	:			:			0	8
Hearts	\bullet		-			\because	\cdots	$\because *$	"xivion			20	8
Spades	$\stackrel{ }{ }$		-		\because	:	\%	\therefore \%	\%		-	2	8

1) What is P (Heart)?
2) What is P (Heart \cap Queen)?
3) What is $P($ Heart \cup Queen $)$?

Example \#2

To begin, realize that all 52 cards in the sample space are equally likely.

1) Since $1 / 4$ of the cards are hearts, $P($ Heart $)=0.25$
2) Since only 1 of the 52 cards is the queen of hearts, $P($ Heart \cap Queen $)=1 / 52=0.019$
3) There are 13 hearts (including the queen of hearts) and an additional 3 questions, so the probability is $16 / 52=0.308$

Conclusion

- This presentation introduced basic definitions and concepts related to probability
- random process -> trial -> outcome -> event -> probability -> union or intersection
- The next presentation will cover more advanced probability, focusing on rules used to calculate the probabilities of my complicated events

