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Outline

1. The addition rule
2. Conditional probability and the Multiplication rule
3. Examples
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Introduction

I Previously, we counted outcomes and divided by the size of the
sample space to determine probabilities

I This approach isn’t always viable, so we’ll now cover a few
probability laws to help us make more sophisticated probability
calculations
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Disjoint Events

I Two events are disjoint if they have no outcomes in common
I Consider rolling a six-sided die, the event of rolling a six is

disjoint from the event rolling an odd number

I For two disjoint events, we can find the probability of unions by
addition
I P(A or B) = P(A) + P(B)
I For a six-sided die, P(Six or Odd Number) =

P(Six) + P(Odd Number) = 1/6 + 3/6 = 2/3
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Disjoint Events

It’s easy to visually confirm this example by looking at a simple
representation of the sample space:
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Non-disjoint events

In contrast, consider P(Six or Even Number), clearly these events
are not disjoint, so adding their probabilities would be a mistake
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The Addition Rule

I In general, P(A or B) = P(A) + P(B)− P(A and B)
I This is known as the addition rule
I In the special case where events A and B are disjoint,

P(A and B) = 0

I In our previous examples:

P(Six or Odd Number) = P(Six) + P(Odd Number)−
P(Six and Odd Number) = 1/6 + 3/6− 0 = 2/3

P(Six or Even Number) = P(Six) + P(Even Number)−
P(Six and Even Number) = 1/6 + 3/6− 1/6 = 1/2
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Venn Diagrams

I Venn diagrams are frequently used as a visual aid when
learning the addition and complement rules

I The diagram below depicts survey results where 33% of college
students were in a relationship (R), 25% were involved in
sports (S), and 11% were in both
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Venn Diagrams - Example

1) P(R or S) = 0.22 + 0.11 + 0.14 = 0.47 (direct calculation)

2) P(R or S) = 0.33 + 0.25− 0.11 = 0.47 (addition rule)
3) P(R or S) = 1− P(Neither) = 1− 0.53 = 0.47 (complement

rule)
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Practice

Consider a high school graduating class of 100 students. Among
them, 50 had taken calculus, 60 had taken physics, and 40 had
taken both.

1) Draw a Venn diagram to represent this scenario
2) Using the addition rule, find the probability that a randomly

selected student has taken either calculus or physics
3) Find the probability that a randomly selected student has taken

neither calculus nor physics
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Practice (solution)

1) Sketched
2) P(C or P) = 50/100 + 60/100− 40/100 = 70/100 = 0.7
3) P((C or P)C ) = 1− 0.7 = 0.3
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Conditional Probability

I Analogous to conditional proportions (row and column
percentages), is the concept of a conditional probability

I Conditional probability is used in scenarios involving dependent
events
I For example, the probability that Steph Curry makes a free

throw could depend on whether he’s playing in a home game or
an away game

I We use a vertical bar to denote conditional probabilities:
P(A|B)
I In this example, we might define “A” to be making the free

throw and “B” to be playing at home
I As you’d expect, conditional probabilities can be estimated from

a contingency table
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Example - Conditional Probabilities

ACTN3 is known as the fast twitch gene, everyone has one of three
genotypes (XX, RR, or RX). The table below summarizes a sample
of 301 elite athletes:

RR RX XX Total
Sprint/power 53 48 6 107
Endurance 60 88 46 194
Total 113 136 52 301

From this table, let’s estimate a few different probabilities:

1) An endurance athlete has genotype XX?

46/194 = 0.237
2) An athlete with the XX genotype is an endurance athlete?

46/52 = 0.885
3) An athlete has the XX genotype and is an endurance athlete?

46/301 = 0.153
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The Multiplication Rule

The relationship between these probabilities motivates the
multiplication rule, which states:

P(A|B) = P(A and B)
P(B)

In our previous example, notice:

1) P(XX|End) = 46/194 = 0.237
2) P(End) = 194/301 = 0.645
3) P(XX and End) = 46/301 = 0.153

RR RX XX Total
Sprint/power 53 48 6 107
Endurance 60 88 46 194
Total 113 136 52 301

It’s easy verify the multiplication rule: 46/194 = 46/301
194/301
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Independence

I Two events are considered independent when
P(A and B) = P(A) ∗ P(B)

I Notice that independence does not mean the events are disjoint
I P(A and B) = 0 for disjoint events

I Independence can greatly simplify a probability calculation
I Consider 3 coin flips:

P(H1 and H2 and H3) = P(H1)∗P(H2)∗P(H3) = (1/2)3 = 1/8

I This is a much easier calculation to think about compared to:

P(H1 and H2 and H3) = P(H3)∗P(H2|H1)∗P(H3|H1 and H2)
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Independence and Sampling from a Population

I Independence is particularly useful when analyzing data that
are a simple random sample from a population

I In general, if the sample data are less than 5% of the
population statisticians will assume each selected case is
independent other selections



17/23

Example #1 - part 1

A local hospital has 22 patients staying overnight, 15 are adults and
7 are children. Among the adults, this is the first ever hospital stay
for 4 of them. Among the children, this is the first ever hospital stay
for 5 of them. Use this information to calculate the following
probabilities:

1) A randomly selected patient is an adult
2) A randomly selected patient is an adult, given it’s their first

ever hospital stay
3) A randomly selected patient is in their first ever hospital stay,

given they are a child
4) A randomly selected patient is in their first ever hospital stay,

or they are a child
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Example #1 - part 1 (solution)

1) P(Adult) = 15/22, there are 22 patients and 15 are adults

2) P(Adult|First) = 4/9, there are 9 first-time patients and 4 are
adults

3) P(First|Child) = 5/7, there are 7 children and 5 of them are
first-time patients

4) P(First or Child) = P(First)+P(Child)−P(First and Child) =
9/22+ 7/22− 5/22 = 0.5, notice we could have calculated this
directly by realizing there are 7 children and 4 first-time adults
(totaling 11 of 22 patients)
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Example #1 - part 2

A local hospital has 22 patients, 15 are adults and 7 are children.
Among the adults, this is the first ever hospital stay for 4 of them.
Among the children, this is the first ever hospital stay for 5 of them.
Now let’s consider randomly selecting two patients sequentially:

1) What is the probability that both selections are adults?
2) What is the probability that at least one of the selections is an

adult?
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Example #1 - part 2 (solution)

1) Let A1 and A2 denote the selection of adults, then
P(A1 and A2) = P(A2|A1) ∗ P(A1) = 14

21 ∗
15
22 = 0.45; notice

these events are not independent

2) Using the additional rule could get complicated here because
the events are not independent. Instead, let C1 and C2 denote
the selection of children and consider
P(A1 or A2) = 1− P(Neither) = 1− P(C2|C1) ∗ P(C1) =
1− 6

21 ∗
7
22 = 1− 0.09 = 0.91
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Example #2

Consider a well-shuffled deck of 52 playing cards and the random
selection of two cards, a “top” card and a “bottom” card

1) The following line of reasoning is incorrect: “Because of the
addition rule, the probability that the top card is the jack of
clubs and the bottom card is the jack of hearts is 2/52.” Point
out the flaw in this argument.

2) The following line of reasoning is also incorrect: “Because of
the addition rule, the probability that the top card is the jack
of clubs or the bottom card is the jack of hearts is 2/52.” Point
out the flaw in this argument.

3) The statements in 1 and 2 both contain flaws, but these
mistakes are not equally bad. Which approach will result in an
answer closer to the truth (for the situation it describes)?
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Example #2 (solution)

1) The addition rule pertains to intersections or “or” statements,
so it shouldn’t be applied here

2) The events involved are not disjoint, it is possible for the top
card to be the jack of clubs and the bottom card to be the jack
of hearts.

3) The second statement is much closer to the truth, because the
possibility for both is very small ( 1

52 ∗
1
51 by the multiplication

rule)
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Conclusion

We’ve now covered three different probability rules:

1) The addition rule, P(A or B) = P(A) + P(B)− P(A and B),
allows us to calculate the probability of unions of events

2) The multiplication rule, P(A and B) = P(A|B) ∗ P(B), allows
us to calculate the probability of intersections of events

3) The complement rule, P(A) + P(AC ) = 1, allows simpler
calculations for large sample spaces


