Random Variables and Discrete Probability Models

Ryan Miller

Outline

1. Defining a random variable
2. Discrete probability models
3. Expected value and standard deviation

Random Variables

- We've been studying probability to understand the possible outcomes of a random process
- Two important random processes are sampling from a population, and assigning treatment/control groups

Random Variables

- We've been studying probability to understand the possible outcomes of a random process
- Two important random processes are sampling from a population, and assigning treatment/control groups
- Statisticians use a random variable to represent the unknown numeric outcome of a random process
- Like any variable, you can think of a random variable, such as X, as a written placeholder for an unknown numerical value

Random Variables

- Consider the random process of flipping a fair coin
- Because random variables must involve a numeric outcome, we can use the value " 1 " to represent the outcome "heads" and " 0 " to represent the outcome "tails"

Random Variables

- Consider the random process of flipping a fair coin
- Because random variables must involve a numeric outcome, we can use the value " 1 " to represent the outcome "heads" and " 0 " to represent the outcome "tails"
- We could've also mapped tails to 1 and heads to 0 without any consequence (so long as we keep track of what is what)

Random Variables

- Consider the random process of flipping a fair coin
- Because random variables must involve a numeric outcome, we can use the value " 1 " to represent the outcome "heads" and " 0 " to represent the outcome "tails"
- We could've also mapped tails to 1 and heads to 0 without any consequence (so long as we keep track of what is what)
- We can now define X as a random variable
- $X=1$ if "heads" is observed, and $X=0$ if "tails" is observed

Probability Models (example)

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)

Probability Models (example)

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- We can use a random variable X to denote the number of total points the team earns from a touchdown
- Recognize X represents a numeric outcome that is unknowable in advance

Probability Models (example)

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- We can use a random variable X to denote the number of total points the team earns from a touchdown
- Recognize X represents a numeric outcome that is unknowable in advance
- Since a rule change in 2015, 9.6% of touchdowns were accompanied by zero additional points, 86.5% resulted in one additional point, and 3.9% resulted in two additional points

Probability Models (example)

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- We can use a random variable X to denote the number of total points the team earns from a touchdown
- Recognize X represents a numeric outcome that is unknowable in advance
- Since a rule change in 2015, 9.6% of touchdowns were accompanied by zero additional points, 86.5% resulted in one additional point, and 3.9% resulted in two additional points
- Based upon these data, we might consider following probability model for X :

X	6	7	8
$P(X=x)$	0.096	0.865	0.039

Practice

- In Lab \#3 you considered sampling from a sock warehouse that contains hundreds of thousands of socks that were 20% are blue, 50% are grey, and 30% are black.
- Letting the random variable X denote the number of black socks in sample of size $n=2$, find a probability model for X (Hint: write out the sample space and find a probability for each member, and remember the complement rule)

Practice (solution)

Probability model for the number of black socks in a sample of size $n=2$:

X	0	1	2
$P(X=x)$	0.49	0.42	0.09

Using a Probability Model

Probability models are useful because they help us understand a few key aspects of a random process:

1) Expected Value, or the "average" numeric outcome
2) Variance, or the total amount that the numeric outcomes vary from their expected value
3) Standard Deviation, or the "average" amount that numeric outcomes vary from their expected value

Expected Value

- The expected value of a random variable is denoted $E(X)$
- It describes the expected result, which is the sum of each possible outcome weighted by its probability

X	6	7	8
$P(X=x)$	0.096	0.865	0.039

- For a randomly chosen NFL touchdown, $E(X)=6 * 0.096+7 * 0.865+8 * 0.039=6.94$ points

Practice

For the sock factory example, find the expected number of black socks in a sample of size $n=2$.

X	0	1	2
$P(X=x)$	0.49	0.42	0.09

Practice (solution)

- $E(X)=0.49 * 0+0.42 * 1+0.09 * 2=0.6$
- Notice how this happens be $n * P$ (black) $=2 * 0.3$, which is not a coincidence

Variance

Returning to the NFL example, to understand how each possible outcome (6,7 , or 8 pts) varies from the expected outcome (6.94 pts) we can calculate their squared deviations

Points	6	7	8
Deviation	$(6-6.94)^{\wedge} 2$	$(7-6.94)^{\wedge} 2$	$(8-6.94)^{\wedge} 2$

If we add these squared deviations, weighted by their probabilities, we get variance:
$\operatorname{Var}(X)=0.096 *(6-6.94)^{2}+0.865 *(7-6.94)^{2}+0.039 *(8-6.94)^{2}=0.13$

Variance

Returning to the NFL example, to understand how each possible outcome (6,7 , or 8 pts) varies from the expected outcome (6.94 pts) we can calculate their squared deviations

Points	6	7	8
Deviation	$(6-6.94)^{\wedge} 2$	$(7-6.94)^{\wedge} 2$	$(8-6.94)^{\wedge} 2$

If we add these squared deviations, weighted by their probabilities, we get variance:
$\operatorname{Var}(X)=0.096 *(6-6.94)^{2}+0.865 *(7-6.94)^{2}+0.039 *(8-6.94)^{2}=0.13$

Standard Deviation

Taking the square-root of the variance, we have the standard deviation, or the average deviation of outcomes from the expected value:

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{0.13}=0.36
$$

So, we expect the average deviation (from the expected value of 6.94) of a touchdown to be 0.36 pts (not much variation)

Practice

For the sock factory example, find the standard deviation for the number of black socks in a sample of size $n=2$.

X	0	1	2
$P(X=x)$	0.49	0.42	0.09

Practice (solution)

- The variance of X is:

$$
0.49 *(0-0.6)^{2}+0.42 *(1-0.6)^{2}+0.09 *(1-0.6)^{2}=0.258
$$

- The standard deviation of X is: $\sqrt{0.258}=0.508$
- This supports the notion that a samples containing either 0 or 1 black socks are likely

The Binomial distribution

- The examples we've considered have been small enough to allow us to write out the probability model using a table
- For more complex examples, it's common to use a mathematical function to model these probabilities

The Binomial distribution

- The examples we've considered have been small enough to allow us to write out the probability model using a table
- For more complex examples, it's common to use a mathematical function to model these probabilities
- For the sampling of binary categorical outcomes (such as the whether or not a sock is black), the binomial distribution can be used:

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

Here, $\binom{n}{x}$ describes the number of way's x "successes" can occur in a sample of size n, and p describes the probability of a "success" for each case

Comments (binomial distribution)

- In this class, I will not ask you to work directly with the binomial distribution because we can approximate it with a simpler probability model (the Normal model!)
- Nevertheless, it's an important model to be aware of in case you encounter and "exact binomial test" in the future

