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Outline

1. Introduction to statistical modeling
2. The one-way ANOVA model
3. Post-hoc testing
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Statistical modeling - introduction

I A model is a simplified representation of some phenomenon
intended to aide in explanation or prediction
I A statistical model is one that involves a probability

distribution

I All statistical models include a systematic component and a
random component:

y = f (X ) + ε

Arguably the simplest statistical model uses f (X ) = µ and
ε ∼ N(0, σ), which suggest data-points are centered at the
population’s mean (µ) with random variability following a Normal
curve
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Statistical modeling - fitted models

Applying a statistical model has two steps:

1) Specifying the model’s systematic and random components
(done at the population-level)

2) Estimating the model parameters (done using the sample data)

Our simple model (from the last slide) would require us to estimate
two parameters: µ and σ
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Statistical modeling - fitted models

Below are two applications of the model f (X ) = µ and ε ∼ N(0, σ):
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Clearly some model fits are better than others, we’ll need a way of
quantifying this.



6/24

Statistical Modeling - residuals and sums of squares

I A good model produces predictions that closely resemble the
observed data
I Predictions only use the model’s systematic component, so our

simple model predicts ȳ (the sample mean) for each data-point

I The accuracy of an individual prediction is expressed as a
residual. In general:

ri = yi − ŷi

I For our simple model, residuals look like:

ri = yi − ȳ
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Statistical Modeling - residuals and sums of squares

We can summarize a model’s overall fit by considering all of its
residuals:

SS =
n∑

i=1
ri

I A smaller sum of squares indicates a better fit between the
model and the observed data

I Analysis of variance (ANOVA) is a statistical test used to
determine whether a more complex model fits the data better
than a less complex model by an amount that is more than
would be expected by random chance
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The one-way ANOVA model

Summarized below are quantitative data for three different groups
(A, B, and C):
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A 20 3.64 0.97
B 30 4.96 0.90
C 10 7.22 0.86

Can you think of two different models for these data? (Hint: think
about one that uses the “group” and one that doesn’t)
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The one-way ANOVA model

One model might use a single mean to represent all of the data,
while another might use group-specific means:
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Is there enough of a difference for us to reject the simpler model in
favor of the more complex model?
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The F -test

ANOVA uses an F -test to compare models using the following steps:

1) H0 involves the simpler model, in our case
H0 : µ1 = µ2 = . . . = µk , while Ha describes the more complex
model, in our case “at least one mean is different”

2) Each model is summarized using a sum of squares (SS), we’ll
use SST for the null model and SSE for the alternative model

3) We then calculate an F -value:

F = (SST − SSE )/(d1 − d0)
Std. Error

I d1 and d0 describe the number of parameters in each model
I In our example, d0 = 1 (the single overall mean) and d1 = 3

(the means of groups “A”, “B”, and “C”)

So, the F -value is a standardized measure of improvement in model
fit (via the per parameter drop in SS)
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The F -test

I We’ve seen that standard errors tend to look like a measure of
variability divided by the sample size, for ANOVA:

Std. Error = SSE
n − d1

I This is the sum of squares of the alternative model divided by
its degrees of freedom, df = n − d1, so the F -value can be
expressed:

F = (SST − SSE )/(d1 − d0)
SSE/(n − d1)
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The F -distribution

I The observed F -value must be compared against the proper
F -distribution to find the p-value

I Mathematically, F -distribution is the ratio of two Chi-squared
distributions divided by their respective degrees of freedom
I In practical terms, this means we need to specify numerator and

denominator df
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Example - introduction

We previously discussed a study exploring the driving of different
categories of drug users:
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Rather than individually comparing each group, we can instead
begin by testing for an overall association.
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Example - null and alternative models

I The null model is akin to modeling everyone’s mean following
distance using a single, overall mean
I Statistical model: yi = µ+ εi , predictions: ŷi = ȳ
I Corresponding hypothesis: H0 : µ1 = µ2 = µ3 = µ4

I The one-way ANOVA model is akin to using group-specific
means
I Statistical model: yi = µi + εi , predictions: ŷi = ȳi
I Corresponding hypothesis: “at least one group-specific mean

differs from the others”
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Example - ANOVA tables

Shown below is an ANOVA table, a common summary table used
to describe a model:

tail <- read.csv("https://remiller1450.github.io/data/Tailgating.csv")
mod <- aov(D ~ Drug, data = tail)
summary(mod)

## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 3 4989 1663 0.85 0.47
## Residuals 115 225127 1958

I The “residuals” row describes the fit of the alternative model
(ie: SSE )

I The “Drug” row describes the improvement in fit that can be
attributed to the variable “Drug” (ie: SST − SSE ).
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Example - diagnostics

I ANOVA relies upon a probability model (the random
component) that might not reasonably reflect the data

I A QQ-plot of the residuals is a popular diagnostic tool
I If the residuals do not reflect a Normal distribution, the model

is improper (as it specifies Normally distributed errors)
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Example - a better model

I In our example, the right-skewed nature of these data is
incompatible with the specified model
I This is relatively common, and a simple solution is to apply a

log-transformation to the outcome variable
I The revised model still isn’t good, but it’s certainly an

improvement
## Df Sum Sq Mean Sq F value Pr(>F)
## Drug 3 0.267 0.08898 2.23 0.0884 .
## Residuals 115 4.588 0.03990
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Practice

We’ve previously introduced data collected by a restaurant server at
a chain restaurant in the suburbs of NYC. The code below reads
these data and converts table size to a categorical variable:

tips <- read.csv("https://remiller1450.github.io/data/Tips.csv")
tips$Size = as.factor(tips$Size) ## Convert table size to categorical

1) Use R to fit a one-way ANOVA model that uses table size to
predict the percent tipped

2) Use the summary() function and an F -test to evaluate this
model relative to the null model

3) Use a QQ-plot to evaluate whether this model one-way ANOVA
model seems appropriate
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Practice (solution)

mod = aov(TipPercent ~ Size, data = tips)
summary(mod)

## Df Sum Sq Mean Sq F value Pr(>F)
## Size 5 0.0295 0.005897 1.601 0.161
## Residuals 238 0.8769 0.003684
plot(mod, which = 2)
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Equal variance assumption

I In addition to assuming Normally distributed errors, ANOVA
also assumes the variance of the outcome is the same for each
group (ie: a single value of σ in the population-level model)

I This can be checked by comparing sample standard deviations
and assessing their similarity
I Typically we are only concerned if there are very large

differences (a ratio ≥ 3 for the largest/smallest)
library(dplyr)
tips %>% group_by(Size) %>% summarize(sd = sd(TipPercent))

## # A tibble: 6 x 2
## Size sd
## <fct> <dbl>
## 1 1 0.0803
## 2 2 0.0668
## 3 3 0.0455
## 4 4 0.0424
## 5 5 0.0677
## 6 6 0.0422
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Post-hoc testing

Tukey’s Honest Significant Differences (HSD) is a post-hoc test that
is designed to control the family-wise Type I error rate:

tail <- read.csv("https://remiller1450.github.io/data/Tailgating.csv")
mod <- aov(LD ~ Drug, data = tail) ## Log-scale outcome
TukeyHSD(mod, conf.level = 0.95)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = LD ~ Drug, data = tail)
##
## $Drug
## diff lwr upr p adj
## MDMA-ALC -0.27947379 -0.66645712 0.1075095 0.2411710
## NODRUG-ALC 0.07044162 -0.23914504 0.3800283 0.9339585
## THC-ALC -0.01341974 -0.32449124 0.2976518 0.9994882
## NODRUG-MDMA 0.34991541 -0.00476067 0.7045915 0.0546053
## THC-MDMA 0.26605404 -0.08991885 0.6220269 0.2138699
## THC-NODRUG -0.08386137 -0.35368446 0.1859617 0.8495067
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ANOVA for other model comparisons

I ANOVA is a general statistical test that can be used to
compare any two nested models
I For example, we could also compare a linear regression model

that treats table size as numeric (in the tipping example)
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ANOVA for other model comparisons

Shown below are the ANOVA tables for each of these models (which
cannot be directly compared since they are not nested):
tips <- read.csv("https://remiller1450.github.io/data/Tips.csv")
linmod = lm(TipPercent ~ Size, data = tips)
anova(linmod)

## Analysis of Variance Table
##
## Response: TipPercent
## Df Sum Sq Mean Sq F value Pr(>F)
## Size 1 0.01850 0.0184975 5.0418 0.02565 *
## Residuals 242 0.88785 0.0036688
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tips$Size = as.factor(tips$Size) ## Convert table size to categorical
aovmod = aov(TipPercent ~ Size, data = tips)
summary(aovmod)

## Df Sum Sq Mean Sq F value Pr(>F)
## Size 5 0.0295 0.005897 1.601 0.161
## Residuals 238 0.8769 0.003684
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Conclusion

This presentation introduced ANOVA as a hypothesis test for
comparing a statistical model against a simpler null model, I expect
you to know the following:

I Situations where one-way ANOVA is used (ie: comparing the
means of multiple groups)

I How to perform one-way ANOVA and post-hoc testing in R (ie:
aov() and TukeyHSD())

I How to interpret ANOVA output (ie: sums of squares, the
F -statistic, etc.)

I Model assumptions made by the one-way ANOVA model (ie:
Normality and equal variance)


