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Central Limit Theorem
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Outline

1. Central Limit theorem
I assumptions, results, and implications

2. Practice using Central Limit theorem



3/13

Introduction

I Statisticians will often focus on single numbers that summarize
trends within sample data
I The sample mean, denoted x̄ , summarizes the center of

numerical data

I Because the act of obtaining sample data is a random process,
x̄ is an observed realization of a continuous random variable
I That is, if the process used to collect our data were repeated

many times, we’d expect different values of x̄ each time (and
these values would follow some probability model)
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The sample average as a random variable

I With modern computing, it’s relatively easy to study the
behavior of x̄ across different random samples

I The Sampling Distribution for a mean section of StatKey is a
nice interactive tool for understanding the random process of
acquiring sample data

I Particularly important is the role of n
I When n is large, the distribution of sample means tends to be

symmetric and bell-shaped, regardless of how the data itself is
distributed (with the exception of extreme outliers)

https://www.lock5stat.com/StatKey/sampling_1_quant/sampling_1_quant.html
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Central Limit theorem (CLT)

I Suppose X1, X2, . . . , Xn are independent random variables with
a common expectation, E (X ), and a common standard
deviation, SD(X )

I If X̄ denotes the average of these random variables, then:

√
n
(

X̄−E(Xi )
SD(Xi )

)
→ N(0, 1)

With some abusive notation, CLT suggests:

x̄ ∼ N
(

E (X ), SD(X)√
n

)



6/13

Partial justification

Notice X̄ = 1
nX1 + 1

nX2 + . . . + 1
nXn, so using our knowledge of

linear combinations of random variables:

E (X̄ ) = 1
nE (X1) + . . . + 1

nE (Xn) = 1
n (n ∗ E (X ))

Similarly:

Var(X̄ ) = 1
n2 Var(X1) + . . . + 1

n2 Var(Xn) = 1
n2 (n ∗ Var(X ))

So:
SD(X̄ ) = SD(X)√

n

Establishing Normality requires a more complicated proof that is
beyond the scope of this course (but recognize we studied this
empirically using StatKey)
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Proportions as averages

The sample proportion is really just an average of n independent
Bernoulli random variables:

X̄ = X1+X2+...+Xn
n p̂ = 1+0+0+1+...+1

n

Applying the Central Limit theorem, and considering what you know
about Bernoulli random variables, what is an approximate
distribution for p̂?

p̂ ∼ N
(

p,
√

p(1−p)
n

)
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Practice

According to the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old males
living in the United States has mean 211 mg/dl, and a standard
deviation of 46 mg/d

1) Suppose we plan to collect a sample of 25 individuals and
measure their cholesterol levels. What is the probability that
the sample average will be above 230?

2) If we plan to a collect a sample of 50 individuals, what is the
probability that the sample average will be above 230?
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Practice (solution)

1) CLT suggests N(211, 46/
√
25) as a model for x̄ , using pnorm

we find P(X̄ ≥ 230) = 0.0174
2) CLT suggests N(211, 46/

√
50) as a model for x̄ , using pnorm

we find P(X̄ ≥ 230) = 0.0014
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Practice (continued)

According to the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old males
living in the United States has mean 211 mg/dl, and a standard
deviation of 46 mg/d

1) Suppose we are planning to collect a sample of 25 individuals
and measure their cholesterol levels. What two values would we
expect the middle 95% of the sample averages to fall between?

2) If we plan to collect a sample of 50 individuals, what two
values would we expect the middle 95% of the sample averages
to fall between?
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Practice (solution)

1) Using qnorm, in 95% of random samples of size n = 25 the
mean will fall between 193.36 and 228.64

2) Using qnorm, in 95% of random samples of size n = 50 the
mean will fall between 198.53 and 223.47
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Remarks (sample size)

I Central Limit theorem illustrates the connection between
sample size and the amount of uncertainty present in the
sample data
I Larger sample sizes will produce estimates with lower variability
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Remarks (next steps)

I The power of the Central Limit theorem is that it allows us to
build reliable probability models for things we have minimal
data on
I Very often, we’ll use the sample mean and standard deviation to

model the sampling distribution

I As we’ll soon see, this will provide us a framework for two
fundamental statistical techniques:
I Confidence Intervals - a method of estimation that takes into

account statistical uncertainty in the sample data
I Hypothesis Tests - a method for determining whether

associations seen in the sample data might be explained by
random chance
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