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Chi-Squared Tests

Ryan Miller



2/29

Outline

1. Goodness of fit tests
2. Tests of association
3. Measures of effect size
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Motivating example - AP Exam answers

Summarized below are the correct answers to 400 randomly selected
AP Exam questions:

A B C D E
85 90 79 78 68

1. If AP Exam answers are truly random, what proportion of
answers do you expect to be “A’s”?

2. Why won’t a hypothesis test involving the proportion of “A”
answers give you enough information to determine if AP
Exam’s answers are randomly distributed?
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Expected counts

I The exact binomial test, as well as the one-sample Z -test,
compare a single observed outcome with a single expected
outcome
I We need to simultaneously compare an entire set of observed

outcomes with an entire set of expected outcomes
I That is, we want to evaluate:

H0 : pA = pB = pC = pD = pE = 0.2

If this null hypothesis were true, we’d expect the sample data to
have 400 ∗ 0.2 = 80 correct answers in each category:

A B C D E
80 80 80 80 80
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Observed vs. expected counts

We can compare the observed counts with the expected counts
(if H0 were true):

Answer A B C D E
Expected Count 80 80 80 80 80
Observed Count 85 90 79 78 68

I The goal is to find p-value describing this discrepancy:
I “If H0 were, what is the probability of deviations at least this

large?”
I Can you come up with a test statistic (ie: a Z -value)?
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Calculating a test statistic

For a one-sample or two-sample Z -test, we’ve used the test statistic:

Z = observed−null
SE

For a Chi-squared test, we’ll use the test statistic:

X 2 =
k∑

i=1

(observedi − expectedi)2

expectedi

I Like other test statistics, it compares the observed data to
what we’d expect under the null hypothesis, while standardizing
the differences
I Now we must sum over the variable’s i categories
I The numerator is squared so that positive and negative

differences won’t cancel each other out
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Calculating a test statistic

For the AP Exam example:

X 2 =
∑

i

(observedi − expectedi)2

expectedi

= (85− 80)2

80 + (90− 80)2

80 + (79− 80)2

80 + (78− 80)2

80 + (68− 80)2

80
= 3.425

Each expected count was found via ei = n ∗ pi , which was
ei = 400 ∗ 0.2 = 80 for every category in this example. In general,
pi can differ for each category.
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The Chi-Squared distribution

The Chi-squared distribution is a squared variant of the Standard
Normal curve:

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normal (Area = 0.05)

Z

 

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Chi−Square w/ df = 1 (Area = 0.05)

Z^2

 



9/29

The Chi-Squared distribution

The relationship between the χ2 distribution and the Normal
distribution is clear when comparing test statistics:

Z = observed− null
SE =⇒ Z 2 = (observed− null)2

SE 2

X 2 =
∑ (observed count− expected count)2

expected count

I Essentially, the χ2 test is just a squared version of the Z -test
I This makes the χ2 test naturally two-sided when we calculate

p-values using only the right tail of the χ2 curve
I Under H0, the SE of each category count is approximately the

square root of that category’s expected count
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Degrees of freedom

I There are many Chi-squared distributions, each is characterized
by a degrees of freedom parameter

I For a goodness of fit test, df = k − 1, where k is the number
of categories being tested
I Intuitively, the reason for this is that knowing the proportions in

k − 1 categories will completely describe the variable as a whole
(using the complement rule)
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Chi-squared goodness of fit testing (summary)

1. State the null hypothesis:
H0 : pA = pB = pC = pD = pE = 0.2

2. Calculate the expected counts under H0:

EA = 0.2 ∗ 400 = 80, EB = 0.2 ∗ 400 = 80, . . .

3. Calculate the χ2 test statistic:

X 2 =
∑

i

(observedi − expectedi)2

expectedi

= (85− 80)2

80 + (90− 80)2

80 + (79− 80)2

80 + (78− 80)2

80 + (68− 80)2

80
= 3.425

4. Locate the χ2 test statistic on the χ2 distribution with k − 1
degrees of freedom to find the p-value
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Chi-Squared goodness of fit testing in R

Using the X 2 test statistic:
pchisq(3.425, df = 4, lower.tail = FALSE)

## [1] 0.4893735

Using the sample data directly:
observed <- c(85, 90, 79, 78, 68)
chisq.test(observed, p = c(.2, .2, .2, .2, .2))

##
## Chi-squared test for given probabilities
##
## data: observed
## X-squared = 3.425, df = 4, p-value = 0.4894
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Practice

Prospective jurors are supposed to be randomly chosen from the
eligible adults in a community. The American Civil Liberties Union
(ACLU) studied the racial composition of the jury pools in 10 trials
in Alameda County, California. Displayed below is the racial and
ethnic composition of the n = 1453 individuals included in these
jury pools, along with the distribution of eligible jurors (according to
the US Census):
Race/Ethnicity White Black Hispanic Asian Other Total
Number in jury pools 780 117 114 384 58 1453
Census percentage 54% 18% 12% 15% 1% 100%

1) Based upon the US Census, create a table of expected counts
2) Perform a Chi-squared goodness of fit test both “by hand” and

using chisq.test
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Practice (solution)

H0 : pw = 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01
HA : At least one pi differs from those specified in H0

Race/Ethnicity White Black Hispanic Asian Other
Observed Count 780 117 114 384 58
Expected Count 1453*.54 = 1453*.18 = 1453*.12 = 1453*.15 = 1453*.01 =

784.6 261.5 174.4 218 14.5

χ
2 =

∑
i

(observedi − expectedi )
2

expectedi

=
(780 − 784.6)2

784.6
+

(117 − 261.5)2

261.5
+

(114 − 174.4)2

174.4
+

(384 − 218)2

218
+

(58 − 14.5)2

14.5
= 357

I The p-value of this test is near zero and provides strong evidence
that the jury pools don’t match the racial proportions of the census

I Comparing the observed vs. expected counts, it appears that Blacks
and Hispanics are underrepresented while Asians and Other are
over-represented in the jury pools.
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Chi-squared tests for association

Last week we discussed the results of an experiment performed by
Joseph Lister involving a sterilization protocol that could be used
prior to surgery:

Died Survived
Control 16 19
Sterile 6 34

We determined that if the sterilization protocol made no difference,
we’d expect 29% in each group to have died.
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Chi-squared tests for association

We can use this pooled proportion to create a table of expected
counts:

Died Survived
Control 35*.29 = 10.2 35*.71 = 24.9
Sterile 40*.29 = 11.6 40*.71 = 28.4

Then, we can compare the observed and expected counts using a
Chi-squared test:

X 2 = (16−10.2)2

10.2 + (19−24.9)2

24.9 + (6−11.6)2

11.6 + (34−28.4)2

28.4 = 8.5

For a two-way frequency table, the degrees of freedom are
df = (N rows− 1)(N cols− 1), or df = 1 in this example.
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Chi-squared tests for association

In R:
## p-value from Chi-squared df =1
pchisq(8.5, df = 1, lower.tail = FALSE)

## [1] 0.003551465

## Using chisq.test for the entire test
tab <- data.frame(Died = c(16,6), Survived = c(19,34))
chisq.test(tab, correct = FALSE)$p.value

## [1] 0.003560924
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Example #2 - Fast twitch muscle fibers

I The ACTN3 gene encodes a protein that affects muscle fiber
composition
I Everyone has one of three genotypes: XX, RR, or RX

I People with the XX genotype are unable to produce ACTN3
proteins, which is believed to lead to decreased muscle power
I However, the protein that the XX genotype produces is believed

to lead to increased muscle endurance
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Example #2 - Fast twitch muscle fibers

Researchers collected the genotypes of 107 sprint/power athletes
and 194 endurance athletes:

RR RX XX Total
Sprint/power 53 48 6 107
Endurance 60 88 46 194
Total 113 136 52 301

To determine whether there is an association between “sport” and
genotype, our null hypothesis must be “no association”. What
would this hypothesis suggest in terms of row proportions?
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Example #2 - Fast twitch muscle fibers

H0 : "No association" suggests the row proportions are equal for
both groups.

RR RX XX Total
Sprint/power 53 48 6 107
Endurance 60 88 46 194
Total 113 136 52 301

Thus, the pooled proportions are p̂rr = 113/301 = 0.38,
p̂rx = 136/301 = 0.45, and p̂xx = 52/301 = 0.17, which can be
used to determine expected counts:

RR RX XX
SP 107*0.38 = 40.17 107*0.45 = 48.35 107*0.17 = 18.49
EN 194*0.38 = 72.83 194*0.45 = 87.65 194*0.17 = 33.51
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Example #2 - Fast twitch muscle fibers

Once we’ve determined the expected counts, the χ2 test statistic is
calculated in the usual manner:

χ2 =
∑

i

(observedi − expectedi)2

expectedi

= (53− 40.2)2

40.2 + (48− 48.4)2

48.4 + (6− 18.5)2

18.5

+ (60− 72.8)2

72.8 + (88− 87.7)2

87.7 + (46− 33.5)2

33.5
= 19.4

For df = (2− 1) ∗ (3− 1) = 2, the p-value is nearly zero:
pchisq(19.4, df = 2, lower.tail = FALSE)

## [1] 6.12835e-05
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Fisher’s exact test

I The Chi-squared test for association requires a large sample
size (all table cells must have expected counts of at least 5)
I If some cells have expected counts less than 5, Fisher’s exact

test can be used:
## Lister's experiment
tab <- data.frame(Died = c(16,6), Survived = c(19,34))
chisq.test(tab, correct = FALSE)$p.value

## [1] 0.003560924
fisher.test(tab)$p.value

## [1] 0.005018047
## ACTN3 genotype study
tab <- data.frame(RR = c(53,60), RX = c(48,88), XX = c(6, 46))
chisq.test(tab, correct = FALSE)$p.value

## [1] 5.989183e-05
fisher.test(tab)$p.value

## [1] 2.503932e-05
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Statistical vs. clinical significance

I The χ2 test for independence and Fisher’s exact test can both
be used to evaluate the strength of an association that exists
between two categorical variables
I The lower the p-value, the more strongly the variables are

associated (That is, the more incompatible the sample data are
with the variables being independent)

I These methods do not tell us anything about the nature of the
association
I We could report the sample difference in proportions

(accompanied by a confidence interval), but this summary
measure has a major shortcoming

I Consider the proportions of smokers and non-smokers that
develop lung cancer in a 10-year period
I These proportions are estimated at 0.00438 and 0.00045

respectively, or a difference of 0.0039 (far less than 1%)
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Effect size and odds ratios

I The most commonly reported measure of association describing
the relationship between two categorical variables is the odds
ratio
I The odds of an event is the ratio of how often it happens to

how often it doesn’t happen
I If a team has a 75% probability of winning a game, the odds of

winning are 3, which is often spoken as “3 to 1”

I In our smoking example, the odds of a smoker developing lung
cancer are 0.00438

1−0.00438 = 0.00440
I Similarly, the odds of a non-smoker developing lung cancer are

0.00045
1−0.00045 = 0.00045

I Thus, the odds ratio is 0.00440
0.00045 = 9.8

I We say that the odds of a smoker developing lung cancer are
9.8 times those of a non-smoker developing lung cancer
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Confidence Interval for an Odds Ratio in R

In Lister’s experiment, we could conclude with 95% confidence that
the odds of death in the Control group are between 1.4 and 17.2
times higher than the odds of death in the Sterile group:

## 95% CI for an OR (Lister's Experiment)
tab <- data.frame(Died = c(16,6), Survived = c(19,34))
fisher.test(tab, conf.int = TRUE,

conf.level = .95)$conf.int[1:2]

## [1] 1.437621 17.166416
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Practice

Chase and Dummer (1992) asked 478 children (grades 4 to 6) from
three school districts in Michigan to choose whether good grades,
athletic ability, or popularity was most important to them. The
table below displays the results of the study broken by gender:

Grades Sports Popularity Total
Boys 117 60 50 227
Girls 130 30 91 251
Total 247 90 141 478

A) Do these data support the hypothesis that Grades, Sports, and
Popularity are equally valued among children in these districts?
Answer this question using an appropriate χ2 test.

B) Is there evidence that boys and girls in this district have
different priorities? Answer this question using an appropriate
χ2 test.

C) What is the odds ratio comparing the odds of a boy prioritizing
sports relative to a girl prioritizing sports?
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Practice (solution)

A):

I H0 : pgrades = psports = ppopular = 1/3 versus HA : at least one
proportion is different

I Under H0, we expect 478 ∗ 0.333 = 159.3 children to prioritize
each category

I Then, X 2 = (247−159.3)2

159.3 + (90−159.3)2

159.3 + (141−159.3)2

159.3 = 80.5
I Comparing X 2 with a Chi-Squared distribution with df = 2,

the p-value is nearly zero

B):

I H0 : Gender and priority aren’t associated
I Under H0 the expected counts are 117.3, 42.7, and 67.0 for

boys, and 129.7, 47.3, 74.0 for girls
I Then, X 2 = (117−117.3)2

117.3 + (60−42.7)2

42.7 + (50−67.0)2

67.0 +
(130−129.7)2

129.7 + (30−47.3)2

47.3 + (91−74.0)2

74.0 = 21.56
I Next, df = (3− 1) ∗ (2− 1) = 2, so the p-value is nearly zero
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Practice (solution - continued)

C:

I The odds of a boy prioritizing sports are 60/227
1−60/227 = 0.359

I The odds of a girl prioritizing sports are 30/251
1−30/251 = 0.136

I The odds ratio (boy/girl) is 0.359/0.136 = 2.64, indicating
boys are 2.64 times a likely to prioritize sports a girls in these
schools

## Can also be found (with 95% CI) via fisher.test
tab <- data.frame(Sports = c(60,30), Not = c(167,221))
fisher.test(tab, conf.int = TRUE, conf.level = .95)

##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 6.057e-05
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.596333 4.443950
## sample estimates:
## odds ratio
## 2.641287
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Summary

This presentation covered two types of Chi-squared tests:

1) Goodness of fit - used to analyze a single categorical variable
2) Association - used to find associations between two

categorical variables

All of the fundamental concepts we’ve previously covered apply to
these new situations, but we must be aware of when and how to
implement these new statistical tests.


