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Outline

2. Confidence Intervals
I Definition and key concepts

3. Using Central Limit theorem to find confidence interval
estimates
I Formulas for commonly used descriptive statistics
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Introduction

I For the remainder of the semester our focus will be on
connecting descriptive statistics and probability
I Our fundamental question is:

Given the trends present in the sample data, what can we
reliably conclude about the broader population?

I For example, if we observed a sample of n = 30 with a mean
total cholesterol level of x̄ = 230, can we confidently say the
sample came from a population with elevated cholesterol?
(defined as ≥ 220)
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Point vs. interval estimates

There are two primary ways in which descriptive statistics from
sample data are reported:

1) Point estimate - A single value describing what the sample
data suggests is most likely true of the population (ie: x̄ is a
point estimate for µ)

2) Interval estimate - A range of values describing what the
sample data suggest might plausibly be the true population
parameter

Point estimates are nice, but they’re almost always wrong (at least
to some degree) due to sampling variability.
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Interval estimates

Most interval estimates follow the format:

Point Estimate±Margin of Error

I The margin of error (MOE) is intended to account for sampling
variability in the data
I To be meaningful, it must be calibrated to balance precision

(how narrow the interval is) with reliability (how likely is the
interval to contain the truth about the population)
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Confidence intervals

A confidence interval is a type of interval estimate where the
margin of error is calibrated to achieve a long-run success rate
known as the confidence level:

Point Estimate± c ∗ SE

I c is a calibration constant needed to achieve a certain
confidence level

I The standard error, or SE , expresses the amount of variability
in the point estimate
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Confidence intervals - graphical intuition

In our cholesterol example, suppose the population we sampled from
actually has a mean of µ = 211 and a standard deviation of σ = 46.
Shown below are x̄ ±5 (an arbitrarily chosen MOE) for 100 different
random samples:
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Remarks (graphical intuition)

I 45 of 100 random samples produced an interval estimate that
contained µ = 211 (the true value of the population parameter
we were trying to estimate)
I Thus, an arbitrarily chosen margin of error of 5 corresponds to a

confidence level of roughly 45% (in this application)
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Using Central Limit theorem

Recall that CLT suggests the following probability model for the
sample average:

x̄ ∼ N
(
E (X ), SD(X)√

n

)
I We do not know the true mean and standard deviation of the

cases within the population, but it’s logical to estimate them
via x̄ and s (the sample mean and sample standard deviation)
I We can use this probability model to determine a better margin

of error
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Confidence intervals - graphical intuition (part 2)

The graph below again depicts 100 different random samples, but
this time the interval endpoints are the 2.5th and 97.5th percentiles
from the Normal model described in the previous slide:
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Notice how these intervals contain µ = 211 across approximately
95% of different random samples!
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Confidence intervals - general procedure

The following generalized procedure can be used to construct a P%
confidence interval:

Point Estimate± c ∗ SE

I c is a quantile that defines the middle P% of the standard
Normal curve
I For example, c = 1.96 is used for a 95% confidence level

I SE is estimated from the data and relies upon results from the
CLT
I For example, SE =

√
p̂(1−p̂)

n is used when estimating a
population proportion
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Practice

A study conducted by Johns Hopkins University Hospital found that
31 of 39 babies born in their facilities at 25 weeks gestation (15
weeks early) went on to survive. Suppose the goal is to estimate the
proportion of babies born under similar circumstances in similar
hospitals that will survive.

1) What is the population parameter of interest? What is our
point estimate of it?

2) Applying the CLT, what is the SE of our point estimate?
3) If we’d like a 98% confidence interval, what value of c should

we use? (Hint: use qnorm in R)
4) Combining parts 1-3, what is the 98% CI in this example?
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Practice (solution)

1) We want to estimate p, the proportion of all babies born 15
weeks early in hospital systems similar to Johns Hopkins that
will survive. Our point estimate is the sample proportion,
p̂ = 31/39 = 0.795

2) CLT suggests SE =
√

p̂∗(1−p̂)
n for a single proportion. Plugging

in our point estimate, this is SE = 0.065
3) Using qnorm(), we find c = 2.326 appropriate for achieving a

98% confidence level
4) 0.795± 2.326 ∗ 0.065 = (0.644, 0.946), so our sample suggests,

with 98% confidence, that the survival rate is anywhere
between 64.4% and 94.6% at comparable hospitals
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Categorical vs. quantitative outcomes

When using p̂ to estimate p, CLT suggests:

SE =
√
p(1− p)/n

When using x̄ to estimate µ, CLT suggests:

SE = σ/
√
n

I For a categorical outcome, the SE formula is entirely based
upon the point estimate and the sample size
I However, for a quantitative outcome, the SE formula involves

an additional unknown parameter, σ (the standard deviation of
cases within the population)
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William Gosset and the t-distribution

For quantitative data, it seems reasonable to simply replace σ with
an estimate from the sample, s, but this is what happens:
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200 different random samples of size n = 8 from a Standard Normal population
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William Gosset and the t-distribution

I Clearly this procedure for constructing 95% CIs is invalid, too
many random samples produced intervals that didn’t contain µ

I William Gosset, an employee at Guinness Brewing, became
aware of this issue in the 1890s
I His work evaluating the yields of different barley strains often

involved statistical analyses of small, Normally distributed
samples

I In 1906, Gosset took a leave of absence from Guinness to study
under Karl Pearson (developer of the correlation coefficient)
I Gosset discovered the issue was due to using s (sample standard

deviation) interchangeably with σ (population standard
deviation)
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William Gosset and the t-distribution

I Treating s as if it were a perfect estimate of σ results in a
systematic underestimation of the total amount of variability
involved in estimating µ
I To account for the additional variability introduced by

estimating σ using s, Gosset proposed a modified distribution
that’s slightly more spread out than the Standard Normal curve

I Typically the inventor of a new method gets to name it after
themselves
I However, Gosset was forced to publish his new distribution

under the pseudonym “student” because Guinness didn’t want
it’s competitors knowing they employed statisticians!

I Student’s t-distribution is now among the most widely used
statistical results of all time
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The t-distribution

The t-distribution accounts the additional uncertainty in small
samples using a parameter known as degrees of freedom, or df :
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The t-distribution
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The t-distribution
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As df increases, the t-distribution becomes more similar to the
Normal curve (nearly indistinguishable past n = 30)
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The t-distribution in R

The qt function is akin to qnorm, and it can be used to find c when
calculating confidence intervals for quantitative data
qt(0.975, df = 5)

## [1] 2.570582
qt(0.975, df = 20)

## [1] 2.085963
qt(0.975, df = 200)

## [1] 1.971896
qnorm(0.975, mean = 0, sd = 1)

## [1] 1.959964

The pt function is akin to pnorm, we’ll use it in the future
pt(2, df = 10, lower.tail = FALSE)

## [1] 0.03669402
pnorm(2, mean = 0, sd = 1, lower.tail = FALSE)

## [1] 0.02275013
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Practice

While waiting at an airport, a traveler notices 6 flights to similar a
similar part of the country were delayed 6, 10, 13, 23, 45, 55
minutes. The mean delay in this sample was 25.33, with a sample
standard deviation of s = 20.2. Assuming these data are a
representative sample of a Normally distributed population, answer
the following:

1) What value of c should be used to properly calibrate a 95%
confidence interval estimate?

2) Use these data to find a 95% CI estimate for the average delay
of all flights to the part of the country where this traveler is
heading.
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Practice (solution)

1) For df = 5, the value c = 2.571 defines the middle 95% this
t-distribution (found using qt())

2) Point Estimate±MOE , Point estimate = x̄ = 25.33, Margin
of error = c ∗ SE = 2.571 ∗ 20.2√

6
I All together, 95% CI: 25.33± 2.571 ∗ 20.2√

6 = (4.1, 46.5)
I We are 95% confident the average delay is somewhere between

4.1 minutes and 46.5 minutes

Note: had we erroneously used a Normal model (instead of the
t-distribution), we’d get an interval that is much narrower (9.2,
41.5), but this interval wouldn’t have the correct confidence level
(ie: it wouldn’t be properly calibrated)
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Confidence interval misconceptions

1) Confidence intervals are a statement about a population
parameter, not the sample data

2) Any individual confidence interval either succeeds or fails.
Consequently, the confidence level describes the reliability of
the procedure used to make the interval estimate
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Practice

Suppose we use a sample of n = 30 randomly chosen adults to
calculate a 95% confidence interval for the mean cholesterol level
(mg/dl) of all US adults: 203± 2.045 ∗ 20√

30 = (195.53, 210.47).
Rate each of the following statements as either true or false and
explain why:

1) We can be 95% confident that the sample mean from another
random sample of size n = 30 is between 195.53 mg/dl and
210.47 mg/dl

2) It’s statistically plausible that the sample mean is anywhere
between 195.53 mg/dl and 210.47 mg/dl

3) We estimate that 95% of the population has cholesterol levels
between 195.53 mg/dl and 210.47 mg/dl
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Practice (solution)

All three statements are false, here’s why:

1) The confidence interval is an estimate of a population
parameter, it says nothing about other samples

2) Confidence intervals describe a population parameter, so should
say that we’re 95% confident that the population’s mean is
between 195.53 mg/dl and 210.47 mg/dl

3) The population parameter is the population’s mean, so we
cannot draw a conclusion about individual cases within the
population
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When not to use CLT

Central Limit theorem facilitates the use of relatively simple
formulas to create confidence intervals from the sample data.
However, these formulas will not produce valid intervals unless the
following conditions are met:

I When estimating µ (a population’s mean), the sample data
must be approximately Normal or n ≥ 30
I Recognize that the t-distribution was created specifically for

small, Normally distributed samples
I When estimating p (a population’s proportion), at least 10

“successes” and at least 10 “failures” must be observed in the
sample data (ie: np̂ ≥ 10 and n(1− p̂) ≥ 10)
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Summary

The general form of any interval estimate is given by:

Point Estimate± c ∗ SE

I When using p̂ to estimate p, CLT suggests SE =
√
p̂(1− p̂)/n

I c should be chosen from the Normal distribution according to
the desired confidence level

I When using x̄ to estimate µ, CLT suggests SE = s/
√
n

I c should be chosen from the t-distribution according to the
desired confidence level

We should also be careful to check that our application satisfies the
conditions necessary to use the CLT


