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Hypothesis Testing Procedures for Two-sample
Data

Ryan Miller
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Outline

1. One-sample vs. two-sample testing
2. Testing a difference in proportions
3. Testing a difference in means
4. Paired study designs
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One-sample vs. two-sample testing

I One-sample testing uses a single sample in an attempt to
falsify a hypothesis about a population (ie: H0 : p = p0 or
H0 : µ = µ0)
I Notice, the null hypothesis must specify a specific numeric value

(ie: p = 0.5 or µ = 0)

I Two-sample testing looks to compare two subgroups within a
population (ie: H0 : p1 − p2 = 0 or H0 : µ1 − µ2 = 0)
I Here, the null hypothesis is relational and be satisfied in many

different ways (ie: p1 and p1 could both be 0.1, or could both
be 0.6)

I This will require us to make some minor adjustments in order to
utilize Z and T tests
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Motivating example - surgical site infections

I In the 1860’s, surgeries often led to infections that resulted in
death

I At the time, many experts believed these infections were due to
“bad air”

I Hospitals had policies that required their wards open their
windows at midday to air out

I It was customary for surgeons to move quickly from patient to
patient with out any sort of special precautions
I In fact, many took pride the accumulated stains on their

surgical gowns as a measure of experience



4/25

Motivating example - surgical site infections

I In the 1860’s, surgeries often led to infections that resulted in
death

I At the time, many experts believed these infections were due to
“bad air”

I Hospitals had policies that required their wards open their
windows at midday to air out

I It was customary for surgeons to move quickly from patient to
patient with out any sort of special precautions
I In fact, many took pride the accumulated stains on their

surgical gowns as a measure of experience



5/25

Motivating example - surgical site infections

I In 1862, Louis Pasteur discovered food spoilage was caused by
the proliferation of harmful micro-organisms

I Pasteur identified three methods for eliminating these
micro-organisms: heat, filtration, and chemical disinfectants
I His heating method became known as pasteurization and is

widely applied to milk, beer, and many other food products

I Joseph Lister, a Professor of Surgery at the Glasgow Royal
Infirmary, became aware of Pasteur’s work and hypothesized
that it might explain the infections that frequently occurred
following surgery
I How would you recommend Lister evaluate his hypothesis?
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Lister’s experiment

I Lister proposed a “sterile” protocol that required surgeons to
wash their hands, wear clean gloves, and disinfect their
instruments with a carbolic acid solution
I He randomly assigned 75 patients to the “sterile” procedure or

a control group
I He then tracked how many patients survived until their

discharage from the hospital

Died Survived
Control 16 19
Sterile 6 34
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Analyzing Lister’s experiment

The big picture goal of an experiment like Joseph Lister’s is to
systematically rule out possible explanations for an improvement in
survival, thereby establishing the “sterile” protocol as the cause of
the improvement. Explanations that need to be ruled out include:

1) Bias?

Unlikely, even though double-blinding wasn’t possible,
it’s unlikely the measurement of the outcome (survival) was
biased. It’s also unlikely that this is a non-representative group
of patients (sampling bias)

2) Confounding variables? No, we’d expect any problematic
variables to be balanced across the two groups due to random
assignment

3) Random chance? . . . This is where hypothesis testing is useful
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Hypothesis testing for two-sample categorical data

I In Lister’s experiment, we’re interested in H0 : p1 − p2 = 0,
which implies the survival rates for the treatment and control
groups are the same

I In our introduction to hypothesis testing, we evaluated the null
hypothesis by simulating outcomes that would be expected if
the null hypothesis were true
I In particular, we used “coin flips” to model the toy choices of

the study’s 16 infants
I Can we apply a similar approach to Lister’s experiment?
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Pooled proportions

I A major challenge is that there are many different ways in
which the treatment and control groups could have the same
survival rate, and each would satisfy the null hypothesis
I However, most realistic is to assume that a pooled proportion

applies to each group
I In Lister’s experiment, p̂0 = 19+34

75 = 0.707 is the overall
survival rate, regardless of group
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Evaluating H0 : p1 − p2 = 0

We can use pooled proportion to simulate the survival outcomes
we’d expect to see in each group if H0 were true:

## Set seed (for replication purposes)
set.seed(15)
nsim = 1000

## Simulate survival for the control group
control <- rbinom(nsim, size = 35, prob = 0.707)

## Simulate survival for the sterile group
sterile <- rbinom(nsim, size = 40, prob = 0.707)
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Evaluating H0 : p1 − p2 = 0

These simulated outcomes can be used to estimate the p-value, or
the probability of a difference in survival that’s at least as large as
19/35− 34/40 = −0.307

## Simulated differences in proportions
diffs <- control/35 - sterile/40

## Estimate the two-sided p-value
2*sum(diffs <= (19/35 - 34/40))/nsim

## [1] 0.004

So, a difference in survival as large as the one seen in Lister’s
experiment would only happen 0.4% of the time if the “sterile”
protocol made no difference.
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Fisher’s exact test

The simulation approach described on the previous few slides is an
approximation of a method known as Fisher’s exact test:
##
## Fisher's Exact Test for Count Data
##
## data: table
## p-value = 0.005018
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.437621 17.166416
## sample estimates:
## odds ratio
## 4.666849

Fisher’s exact test should be used to test for a difference in
categorical outcomes across two groups. You can view it as a
generalization of the exact binomial test.
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The two-sample Z -test

Another way to use the pooled proportion is within the standard
error suggested by the Central Limit theorem result:

p̂1 − p̂2 ∼ N
(
p1 − p2,

√
p1(1−p1)

n1
+ p2(1−p2)

n2

)
This approach allows us to calculate a Z -value and perform a Z -test:

Z = Observed−Null
SE = (p̂1−p̂2)−0√

p̂0(1−p̂0)
n1

+ p̂0(1−p̂0)
n2

Remember that p̂0 is the pooled proportion, it represents the most
likely survival rate when the null hypothesis is true
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Example - two-sample Z -test

For Lister’s experiment:

1) H0 : p1 − p2 = 0 vs. Ha : p1 − p2 6= 0
2) The pooled proportion that best reflects H0 is:

p̂0 = 19+34
75 = 0.707

3) Z = Observed−Null
SE = (19/35−34/40)−0√

0.707(1−0.707)
35 + 0.707(1−0.707)

40

= -2.916

4) The two-sided p-value is 0.0035 (see R code below). Thus, we
can conclude that Lister’s sterilization protocol causes an
improvement in survival.

2*pnorm(-2.916, mean = 0, sd = 1, lower.tail = TRUE)

## [1] 0.003545505
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Remarks - sample size and choice of statistical test

I Fisher’s exact test is computationally expensive (especially for
larger samples)
I The two-sample Z -test is generally recommended when the

“success-failure condition” is met for both groups (ie: the
sample data contain at least 10 “successes” and 10 “failures” in
each group)

I However, modern computing has made it feasible to use Fisher’s
exact test in most circumstances

I Both tests produce a similar p-value for large samples, but the
two-sample Z -test can be unreliable when the success-failure
condition is not met
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Practice

In 2015-16, the Golden State Warriors set an NBA record for most
wins in a season. The table below shows a breakdown of the
Warrior’s wins and losses by whether the game was played on their
home court, or on their opponent’s court:
gsw = read.csv("https://remiller1450.github.io/data/GSWarriors.csv")
table(gsw$Location, gsw$Win)

##
## L W
## Away 7 34
## Home 2 39

1) Perform a two-sample Z -test to evaluate whether the observed
difference in the Warrior’s home vs. away success could be
explained by random chance.

2) Briefly explain why a two-sample Z -test might be inappropriate,
then analyze these data using Fisher’s exact test (the preferred
approach in this application)
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Practice (solution)

1) H0 : p1 − p2 = 0, where p1 is the proportion of wins at home
and p2 is the proportion wins on the road. Then,
Z = (34/41−39/41)−0

0.069 = 1.77, where 0.069 is the standard error
calculated using the pooled proportion. The two-sided p-value
corresponding to this Z -value is 0.077, so there’s borderline
evidence of better performance at home.

2) The null hypothesis is still H0 : p1 − p2 = 0, see the R code
below for the p-value:

gsw = read.csv("https://remiller1450.github.io/data/GSWarriors.csv")
fisher.test(table(gsw$Location, gsw$Win))$p.value

## [1] 0.1549418
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Hypothesis testing for two-sample quantitative data

In order to test for a difference in means, we can begin with the
same general approach as the two-sample Z -test:

I Propose H0 : µ1 − µ2 = 0
I Find the corresponding sample outcome, x̄1 − x̄2

I Using CLT, estimate SE =
√

s2
1

n1
+ s2

2
n2
, where s1 and s2 are the

sample standard deviations of each group

At this point we’ve estimated two extra population parameters using
the sample data, so we must use the T -distribution:

T = Observed−Null
SE = (x̄1−x̄2)−0√

s2
1

n1
+

s2
2

n2

Degrees of freedom are complicated, we’ll either use R or take the
smaller of n1 − 1 and n2 − 1 if forced to work “by hand”
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Practice

I At the 2008 Beijing Olympics, 25 different swimming world
records were broken, the most since 1976, when goggles were
first used in competition

I Of these 25 new records, 23 were set by swimmers using a
wetsuit known as the LZR Racer, a suit produced by Speedo
whose design involved scientists at NASA

I But is this convincing evidence that LZR Racer provides an
unfair advantage?
I Are there any alternative explanations for 23 of 25 records being

set by swimmers who wore LZR Racers?
I Recognize that these data are observational, so it could be that

all of the best swimmers were wearing this suit. Therefore, an
experimental study should be performed
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Practice

I The wetsuits data contains the results of an experiment
involving 12 competitive swimmers
I Each swam 1500m for time under two conditions: wearing a

high-tech wetsuit, or wearing a placebo suit identical in
appearance

I It was randomly determined which condition the participant
experienced first

I The columns Wetsuit and NoWetsuit record the respective
velocities (in m/s) over the 1500m swim

wet <- read.csv("https://remiller1450.github.io/data/Wetsuits2.csv")

Use R to find the sample mean and standard deviation of each
group, then perform a two-sample T -test “by hand”
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Practice (solution)

I Consider H0 : µ1 − µ2 = 0, where µ1 is the average velocity
when wearing a wetsuit and µ2 is the average velocity when
wearing a normal swimsuit.

I We observed x̄1 = 1.507, x̄2 = 1.429, s1 = 0.136, and
s2 = 0.141

I Thus, the T -value relating the sample data to the null
hypothesis is T = (1.507−1.429)−0√

0.1362/12+0.1412/12
= 1.379

I Comparing this against a t-distribution with df = 11, the
two-sided p-value is 0.195, indicating insufficient evidence of
any difference in velocity
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The t.test function

We can use the t.test function in R to perform this test using the
precise degrees of freedom:
t.test(x = wet$Wetsuit, y = wet$NoWetsuit, alternative = "two.sided")

##
## Welch Two Sample t-test
##
## data: wet$Wetsuit and wet$NoWetsuit
## t = 1.3688, df = 21.974, p-value = 0.1849
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.03992937 0.19492937
## sample estimates:
## mean of x mean of y
## 1.506667 1.429167

Notice the actual degrees of freedom are slightly below
n1 + n2 − 2 = 22, which why the “by hand” approach uses the lower
bound min(n1 − 1, n2 − 1)
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Non-parametric alternatives

The two-sample t-test is designed to work in two settings:

1) Small, Normally distributed samples
2) Large samples of any distributional shape (ie: n1 ≥ 30 and

n2 ≥ 30)

Outside of these settings, the Wilcoxon Rank-Sum test can be used
to test whether the medians of each group are equal:
## Warning in wilcox.test.default(x = wet$Wetsuit, y = wet$NoWetsuit, alternative =
## "two.sided"): cannot compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: wet$Wetsuit and wet$NoWetsuit
## W = 95.5, p-value = 0.1838
## alternative hypothesis: true location shift is not equal to 0
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Comments - paired designs

The “Wetsuits” study used a paired design where each subject
served as their own control. Therefore, we should treat it as
one-sample data and analyze the paired differences:

t.test(wet$Difference, mu = 0)$p.value

## [1] 8.885414e-08
t.test(x = wet$Wetsuit, y = wet$NoWetsuit, mu = 0)$p.value

## [1] 0.1848961

Paired designs can provide a tremendous statistical advantage
(variability within individuals tends to be lower than variability
between individuals), and they also help control for confounding
variables!
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Summary

This presentation covered two new hypothesis testing scenarios:

1) Two-sample categorical data, where we evaluate
H0 : p1 − p2 = 0 using either Fisher’s exact test or a
two-sample Z -test

2) Two-sample quantitative data, where we evaluate
H0 : µ1 − µ2 = 0 using either a two-sample T -test or the
Wilcoxon Rank-Sum test

All of the fundamental concepts we’ve previously covered apply to
these new situations, but we must be aware of when and how to
implement these new statistical tests.


