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Outline

1. Basic definitions
I random process, sample space, events

2. Probability laws
I disjoint events, compliment rule, addition rule, independence,

multiplication rule
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Introduction

I Statistical inference, the process of using sample data to reach
a conclusion, inherently involves uncertainty
I Which cases from the population ended up in the sample data?
I Which cases ended up in the treatment and control groups?
I Could the data generation process have unfolded differently?
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Basic Definitions

I A random process describes any phenomenon whose outcome
cannot be predicted with certainty

I A sample space refers to the collection of possible outcomes
of a random process

I An event describes the realization of one (or more) outcomes
from a random process

Process Space Event
Flipping a Coin {H,T} Seeing H
Rolling a 6-sided Die {1,2,3,4,5,6} Seeing an odd number
Person takes Vaccine {Disease, No Disease} No Disease
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Probabilty

I Probability describes the long-run relative frequency of an
event over infinitely many repetitions of a random process

I The theoretical justification for this definition is the Law of
Large Numbers, which states that the proportion of times an
outcome is observed will converge to it’s probability
I For example, when flipping a fair coin we’ll say P(Heads) = 0.5

because the proportion of heads will converge to 0.5 if the
random process is repeated many times
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Disjoint events

I Two events are disjoint or mutually exclusive if they cannot
both occur simultaneously
I If we flip a single coin, “Heads” and “Tails” are disjoint
I If we roll a six-sided die, “Odd” and “≥ 4” are not disjoint

I We can express the probability of disjoint events using the
notation: P(A1 ∩ A2) = 0
I In words, the probability of observing both A1 and A2

simultaneously is zero
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Probability distributions

I Probability distributions are used to map disjoint events to
probabilities
I Here is an example for the sum of two rolls of a six-sided die:

Event 2 3 4 5 6 7 8 9 10 11 12
Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

I A valid probability distribution must satisfy all of the following:
I All events must be disjoint
I Each event must have a probability ≥ 0
I The probability of the entire set of events (sample space) sums

to exactly 1
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Addition rule (disjoint events)

If two events are disjoint, the probability that either event occurs is
given by:

P(A1 ∪ A2) = P(A1) + P(A2)

For example, for a single coin flip:

P(Heads ∪ Tails) = P(Heads) + P(Tails) = 0.5 + 0.5 = 1
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Addition rule (general)

If the events are not disjoint, the probability that either event occurs
is given by:

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

For example, consider a single roll of a six-sided die:

P(>3 ∪ Even) = P(>3) + P(Even) = 3/6 + 3/6− 2/6 = 0.667
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Venn diagrams

Venn diagrams provide a useful heuristic for understanding the
addition rule:
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Practice

A standard deck of playing cards contains 52 cards that belong to 4
different suits:

For the random process of drawing a single card, find the following
probabilities:

1) P(Heart ∩ Diamond)
2) P(Heart ∪ Diamond)
3) P(Heart ∪ Even Number)
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Practice (solution)

1) P(Heart ∩ Diamond) = 0
2) P(Heart ∪ Diamond) = 13/52 + 13/52 = 0.5
3) P(Heart ∪ Even Number) = 13/52 + 20/52− 5/52 = 0.538
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Complement rule

I For any event, A, we define AC as the complement of A
I AC represents all outcomes in the sample space that do not

belong to A
I For example, if A is seeing a 6 when rolling a six-sided die, AC

is rolling either a 1, 2, 3, 4, or 5

I The complement rule states: P(AC ) = 1− P(A)
I For example, when rolling a six-sided die:

P(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5) = 1− P(6) = 1− 1/6 = 0.1667
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Practice

A standard deck of playing cards contains 52 cards that belong to 4
different suits:

For the random process of drawing a single card, find the following
probabilities:
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Practice (solution)

1) P(HeartC ) = 1− 13/52 = 0.75
2) P(HeartC ∪ Even Number) =

P(HeartC ) + P(Even Number)−P(HeartC ∩ Even Number) =
39/52 + 20/52− 15/52 = 0.846
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Multiplication rule (independence)

I Two random processes are independent if knowing the
outcome of one process provides no insight into the outcome of
the other
I Flipping a fair coin and rolling a six-sided die are independent

random processes
I A single student receiving a calculus test score and a physics

test score are not

I If events A1 and A2 arise from independent random processes,
the multiplication rule states:

P(A1 ∩ A2) = P(A1) ∗ P(A2)
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Independent vs. disjoint events

I Disjoint events generally are never independent (aside from the
trivial case where one event has zero probability)
I If A1 and A2 are disjoint, then P(A1 ∩ A2) = 0
I If A1 and A2 are independent, then P(A1 ∩A2) = P(A1) ∗P(A2)
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Dependent events

I When probability of an event can be influenced by another
event, we must use conditional probability
I A simple example is sampling from a small population
I Let A1 denote the event of randomly drawing a yellow ball,

clearly P(A1) = 2/9
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Sampling from a small population

I Now let Ai represent the i th draw (without replacement) from
the urn being a yellow ball
I What is P(A1 and A2)?
I What about P(A1 and A2 and A3)?
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An incorrect approach

I The multiplication rule seemingly suggests:
I P(A1 and A2) = P(A1) ∗ P(A2) = 2

9 ∗
2
9 ≈ 0.05

I P(A1 and A2 and A3) = P(A1) ∗ P(A2) ∗ P(A3) = ( 2
9 )3 ≈ 0.01

I However, observing a yellow ball on the first draw alters the
chances of getting a yellow ball on the second or third draw
I This is most obviously evidenced by the fact that drawing 3

yellow balls is impossible!
I Clearly the multiplication rule needs to be adjusted to work for

dependent events
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Multiplication Rule (general)

I In our example, it’s easy to see P(A1) = 2/9 and
P(A2|A1) = 1/8, as well as P(A3|A1, A2) = 0
I These examples illustrate the concept of conditional probability,

and they lead us to the general multiplication rule:

P(A and B) = P(A) ∗ P(B|A) = P(A|B) ∗ P(B)

It’s often useful to rearrange this equation:

P(A|B) = P(A and B)
P(B)
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Practice

A standard deck of playing cards contains 52 cards that belong to 4
different suits:

For the random process of drawing a single card, find the following
probabilities:

1) P(Heart|Red)
2) P(Ten| ≥ Seven)
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Practice (solution)

1) P(Heart|Red) = P(Heart ∩ Red)/P(Red) = 13/52
26/52 = 0.5

2) P(Ten| ≥ Seven) = P(Ten ∩ ≥ Seven)/P(≥ Seven) =
4/52
16/52 = 0.25
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Estimating probabilities from contingency tables

I Recall that contingency tables are a method used to relate two
categorical variables
I We saw that row proportions or column proportions were

particularly useful in describing potential associations

I Since we’ve defined probability as a long run frequency, it
makes sense to use proportions observed in a sample as our
best estimate of certain probabilities

death not
black 38 142
white 46 152

I In the Florida Death Penalty study (the table shown above), we
might estimate P(Death|WhiteOffender) = 46/(152 + 46) =
0.232
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Marginal, joint, and conditional probabilities

Contingency tables can help us understand three distinct types of
probabilities used in scenarios involving two variables (ie: two
random processes)

death not
black 38 142
white 46 152

1) A marginal probability only considers a single variable, for
example: P(Death) = 84/378 = 0.222

2) A joint probability simultaneous considers both variables, for
example: P(Death ∩WhiteOffender) = 46/378 = 0.165

3) A conditional probability considers one variable, under the
assumption that the other has already been observed, for
example: P(Death|WhiteOffender) = 46/198 = 0.232
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Practice

The table below describes survival of residents of Boston, MA in
1721 that were exposed to smallpox. Some of these residents had
been inoculated using a controlled strain of smallpox:

Lived Died Total
Inoculated 238 6 244
Not Inoculated 5136 884 6020
Total 5374 890 6264

State whether each of the following is a marginal, joint, or
conditional probability, then estimate it using the data presented
above:

1) That a resident died from their exposure
2) That a resident died given they’d been inoculated
3) That a resident had been inoculated given they’ve died
4) That a randomly chosen resident was both inoculated and

ended up dying
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Practice (solution)

1) P(Died) = 890/6264, marginal
2) P(Died|Inoculated) = 6/244, conditional
3) P(Inoculated|Died) = 6/890, conditional
4) P(Inoculated ∩ Died) = 6/6264, joint
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Summary

I We need to understand probability because most of the data we
analyze is the consequence of one or more random processes:
I Sampling from a population, randomly assigning treatment and

control groups, etc.

I At its most basic level, probability involves three major rules:
I The addition rule: P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
I The complement rule: P(AC ) = 1− P(A)
I The multiplication rule:

P(A and B) = P(A) ∗ P(B|A) = P(A|B) ∗ P(B)
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