## Probability

Ryan Miller

## Outline

1. Basic definitions

- random process, sample space, events

2. Probability laws

- disjoint events, compliment rule, addition rule, independence, multiplication rule


## Introduction

- Statistical inference, the process of using sample data to reach a conclusion, inherently involves uncertainty
- Which cases from the population ended up in the sample data?
- Which cases ended up in the treatment and control groups?
- Could the data generation process have unfolded differently?


## Basic Definitions

- A random process describes any phenomenon whose outcome cannot be predicted with certainty
- A sample space refers to the collection of possible outcomes of a random process
- An event describes the realization of one (or more) outcomes from a random process

| Process | Space | Event |
| :--- | :--- | :--- |
| Flipping a Coin | $\{\mathrm{H}, \mathrm{T}\}$ | Seeing H |
| Rolling a 6-sided Die | $\{1,2,3,4,5,6\}$ | Seeing an odd number |
| Person takes Vaccine | $\{$ Disease, No Disease $\}$ | No Disease |

## Probabilty

- Probability describes the long-run relative frequency of an event over infinitely many repetitions of a random process


## Probabilty

- Probability describes the long-run relative frequency of an event over infinitely many repetitions of a random process
- The theoretical justification for this definition is the Law of Large Numbers, which states that the proportion of times an outcome is observed will converge to it's probability
- For example, when flipping a fair coin we'll say $P$ (Heads) $=0.5$ because the proportion of heads will converge to 0.5 if the random process is repeated many times



## Disjoint events

- Two events are disjoint or mutually exclusive if they cannot both occur simultaneously
- If we flip a single coin, "Heads" and "Tails" are disjoint
- If we roll a six-sided die, "Odd" and " $\geq 4$ " are not disjoint


## Disjoint events

- Two events are disjoint or mutually exclusive if they cannot both occur simultaneously
- If we flip a single coin, "Heads" and "Tails" are disjoint
- If we roll a six-sided die, "Odd" and " $\geq 4$ " are not disjoint
- We can express the probability of disjoint events using the notation: $P\left(A_{1} \cap A_{2}\right)=0$
- In words, the probability of observing both $A_{1}$ and $A_{2}$ simultaneously is zero


## Probability distributions

- Probability distributions are used to map disjoint events to probabilities
- Here is an example for the sum of two rolls of a six-sided die:

| Event | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Probability | $1 / 36$ | $2 / 36$ | $3 / 36$ | $4 / 36$ | $5 / 36$ | $6 / 36$ | $5 / 36$ | $4 / 36$ | $3 / 36$ | $2 / 36$ | $1 / 36$ |

## Probability distributions

- Probability distributions are used to map disjoint events to probabilities
- Here is an example for the sum of two rolls of a six-sided die:

| Event | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Probability | $1 / 36$ | $2 / 36$ | $3 / 36$ | $4 / 36$ | $5 / 36$ | $6 / 36$ | $5 / 36$ | $4 / 36$ | $3 / 36$ | $2 / 36$ | $1 / 36$ |

- A valid probability distribution must satisfy all of the following:
- All events must be disjoint
- Each event must have a probability $\geq 0$
- The probability of the entire set of events (sample space) sums to exactly 1


## Addition rule (disjoint events)

If two events are disjoint, the probability that either event occurs is given by:

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)
$$

For example, for a single coin flip:

$$
P(\text { Heads } \cup \text { Tails })=P(\text { Heads })+P(\text { Tails })=0.5+0.5=1
$$

## Addition rule (general)

If the events are not disjoint, the probability that either event occurs is given by:

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right)
$$

For example, consider a single roll of a six-sided die:

$$
P(>3 \cup \text { Even })=P(>3)+P(\text { Even })=3 / 6+3 / 6-2 / 6=0.667
$$

## Venn diagrams

Venn diagrams provide a useful heuristic for understanding the addition rule:

$$
P(A \cup B)
$$



## Practice

A standard deck of playing cards contains 52 cards that belong to 4 different suits:

Example set of 52 poker playing cards

| Suit | Ace | 2 | 3 |  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Jack | Queen | King |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clubs |  |  |  |  |  | $+\underset{+\infty}{+4}$ | $\begin{array}{ll} \div * \\ \vdots \\ \vdots \end{array}$ |  | $\begin{aligned} & +0 \\ & +* \\ & +0 \end{aligned}$ | $\stackrel{+}{*}+$ | $\underbrace{*}_{i}$ | $8$ | $5$ | ${ }^{8} 8_{8}^{*}$ |
| Diamonds | - |  | : |  |  |  |  | $\pm$ |  |  |  | $8$ | $0$ | $8$ |
| Hearts | $\checkmark$ |  | : |  | - |  |  |  |  | Nox | $0$ | 边, | $0_{0}^{0}$ | $8$ |
| Spades | A. |  |  |  | $\bullet \bullet$ |  |  | $\therefore:$ |  | : |  | $0$ | $8$ | $8_{8}^{8}$ |

For the random process of drawing a single card, find the following probabilities:

1) $P($ Heart $\cap$ Diamond $)$
2) $P$ (Heart $\cup$ Diamond $)$
3) $P($ Heart $\cup$ Even Number $)$

## Practice (solution)

1) $P($ Heart $\cap$ Diamond $)=0$
2) $P($ Heart $\cup$ Diamond $)=13 / 52+13 / 52=0.5$
3) $P($ Heart $\cup$ Even Number $)=13 / 52+20 / 52-5 / 52=0.538$

## Complement rule

- For any event, $A$, we define $A^{C}$ as the complement of $A$
- $A^{C}$ represents all outcomes in the sample space that do not belong to $A$
- For example, if $A$ is seeing a 6 when rolling a six-sided die, $A^{C}$ is rolling either a $1,2,3,4$, or 5


## Complement rule

- For any event, $A$, we define $A^{C}$ as the complement of $A$
- $A^{C}$ represents all outcomes in the sample space that do not belong to $A$
- For example, if $A$ is seeing a 6 when rolling a six-sided die, $A^{C}$ is rolling either a $1,2,3,4$, or 5
- The complement rule states: $P\left(A^{C}\right)=1-P(A)$
- For example, when rolling a six-sided die:

$$
P(1 \cup 2 \cup 3 \cup 4 \cup 5)=1-P(6)=1-1 / 6=0.1667
$$

## Practice

A standard deck of playing cards contains 52 cards that belong to 4 different suits:

Example set of 52 poker playing cards

| Suit | Ace | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Jack | Queen | King |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clubs | $\%$ |  | it |  | $+{ }_{4}^{4+\infty}+$ |  |  |  |  | $\stackrel{y}{*}+$ | ${ }_{4}^{8}$ | ${ }^{2} 0_{8}^{4}$ | $8_{8}^{8}$ |
| Diamonds | - |  | $:$ |  |  |  |  | $\ddot{*}$ |  | $\square_{i}$ | $8$ | $0$ | $8$ |
| Hearts | $\checkmark$ |  | $\because$ |  |  |  |  | $\begin{aligned} & 40^{\circ} \\ & y_{0} \\ & 0 \end{aligned}$ |  | $A$ | ${ }^{2} .$ | $a_{0}$ | $8$ |
| Spades | A. |  |  |  | $\therefore \stackrel{\leftrightarrow}{4}$ | $:$ |  |  |  | isi | $8$ | $9$ | $8$ |

For the random process of drawing a single card, find the following probabilities:

1) $P\left(\right.$ Heart $\left.^{C}\right)$
2) $P$ (Heart ${ }^{C} \cup$ Even Number)

## Practice (solution)

1) $P\left(\right.$ Heart $\left.^{C}\right)=1-13 / 52=0.75$
2) $P\left(\right.$ Heart $^{C} \cup$ Even Number $)=$
$P\left(\right.$ Heart $\left.^{C}\right)+P($ Even Number $)-P\left(\right.$ Heart $^{C} \cap$ Even Number $)=$ $39 / 52+20 / 52-15 / 52=0.846$

## Multiplication rule (independence)

- Two random processes are independent if knowing the outcome of one process provides no insight into the outcome of the other
- Flipping a fair coin and rolling a six-sided die are independent random processes
- A single student receiving a calculus test score and a physics test score are not


## Multiplication rule (independence)

- Two random processes are independent if knowing the outcome of one process provides no insight into the outcome of the other
- Flipping a fair coin and rolling a six-sided die are independent random processes
- A single student receiving a calculus test score and a physics test score are not
- If events $A_{1}$ and $A_{2}$ arise from independent random processes, the multiplication rule states:

$$
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) * P\left(A_{2}\right)
$$

## Independent vs. disjoint events

- Disjoint events generally are never independent (aside from the trivial case where one event has zero probability)
- If $A_{1}$ and $A_{2}$ are disjoint, then $P\left(A_{1} \cap A_{2}\right)=0$
- If $A_{1}$ and $A_{2}$ are independent, then $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) * P\left(A_{2}\right)$


## Dependent events

- When probability of an event can be influenced by another event, we must use conditional probability
- A simple example is sampling from a small population
- Let $A_{1}$ denote the event of randomly drawing a yellow ball, clearly $P\left(A_{1}\right)=2 / 9$



## Sampling from a small population

- Now let $A_{i}$ represent the $i^{\text {th }}$ draw (without replacement) from the urn being a yellow ball
- What is $P\left(A_{1}\right.$ and $\left.A_{2}\right)$ ?
- What about $P\left(A_{1}\right.$ and $A_{2}$ and $\left.A_{3}\right)$ ?



## An incorrect approach

- The multiplication rule seemingly suggests:
- $P\left(A_{1}\right.$ and $\left.A_{2}\right)=P\left(A_{1}\right) * P\left(A_{2}\right)=\frac{2}{9} * \frac{2}{9} \approx 0.05$
- $P\left(A_{1}\right.$ and $A_{2}$ and $\left.A_{3}\right)=P\left(A_{1}\right) * P\left(A_{2}\right) * P\left(A_{3}\right)=\left(\frac{2}{9}\right)^{3} \approx 0.01$


## An incorrect approach

- The multiplication rule seemingly suggests:
- $P\left(A_{1}\right.$ and $\left.A_{2}\right)=P\left(A_{1}\right) * P\left(A_{2}\right)=\frac{2}{9} * \frac{2}{9} \approx 0.05$
- $P\left(A_{1}\right.$ and $A_{2}$ and $\left.A_{3}\right)=P\left(A_{1}\right) * P\left(A_{2}\right) * P\left(A_{3}\right)=\left(\frac{2}{9}\right)^{3} \approx 0.01$
- However, observing a yellow ball on the first draw alters the chances of getting a yellow ball on the second or third draw
- This is most obviously evidenced by the fact that drawing 3 yellow balls is impossible!
- Clearly the multiplication rule needs to be adjusted to work for dependent events


## Multiplication Rule (general)

- In our example, it's easy to see $P\left(A_{1}\right)=2 / 9$ and $P\left(A_{2} \mid A_{1}\right)=1 / 8$, as well as $P\left(A_{3} \mid A_{1}, A_{2}\right)=0$
- These examples illustrate the concept of conditional probability, and they lead us to the general multiplication rule:

$$
P(A \text { and } B)=P(A) * P(B \mid A)=P(A \mid B) * P(B)
$$

## Multiplication Rule (general)

- In our example, it's easy to see $P\left(A_{1}\right)=2 / 9$ and $P\left(A_{2} \mid A_{1}\right)=1 / 8$, as well as $P\left(A_{3} \mid A_{1}, A_{2}\right)=0$
- These examples illustrate the concept of conditional probability, and they lead us to the general multiplication rule:

$$
P(A \text { and } B)=P(A) * P(B \mid A)=P(A \mid B) * P(B)
$$

It's often useful to rearrange this equation:

$$
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}
$$

## Practice

A standard deck of playing cards contains 52 cards that belong to 4 different suits:

Example set of 52 poker playing cards

| Suit | Ace | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Jack | Queen | King |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clubs | $4$ |  |  |  | $4$ |  | ${ }^{*}$ |  |  |  | ${ }_{6}^{6}$ | ${ }^{2}{ }_{8}^{4}$ | $8_{8}^{4}$ |
| Diamonds | - |  | : |  | $\because \bullet$ |  |  | $\ddot{\square}$ |  | $\stackrel{*}{+i}$ | $8$ | $9$ | $8$ |
| Hearts | $\checkmark$ |  | $\vdots$ |  | $\stackrel{*}{*}$ |  |  | $\begin{aligned} & 10 y_{0} \\ & y_{0} \\ & A \end{aligned}$ | $\begin{array}{ll} 4 \\ y \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $5$ | $0^{\prime \prime}$ | $8$ |
| Spades | $n$ | $\stackrel{\rightharpoonup}{\bullet}$ | $:$ | ** | $\because$ |  | $\therefore:$ |  | iot |  | $8$ | $90$ | $\mathbb{E}^{8}$ |

For the random process of drawing a single card, find the following probabilities:

1) $P$ (Heart $\mid$ Red $)$
2) $P($ Ten $\mid \geq$ Seven $)$

## Practice (solution)

1) $P($ Heart $\mid$ Red $)=P($ Heart $\cap$ Red $) / P($ Red $)=\frac{13 / 52}{26 / 52}=0.5$
2) $P($ Ten $\mid \geq$ Seven $)=P($ Ten $\cap \geq$ Seven $) / P(\geq$ Seven $)=$ $\frac{4 / 52}{16 / 52}=0.25$

## Estimating probabilities from contingency tables

- Recall that contingency tables are a method used to relate two categorical variables
- We saw that row proportions or column proportions were particularly useful in describing potential associations


## Estimating probabilities from contingency tables

- Recall that contingency tables are a method used to relate two categorical variables
- We saw that row proportions or column proportions were particularly useful in describing potential associations
- Since we've defined probability as a long run frequency, it makes sense to use proportions observed in a sample as our best estimate of certain probabilities


## Estimating probabilities from contingency tables

- Recall that contingency tables are a method used to relate two categorical variables
- We saw that row proportions or column proportions were particularly useful in describing potential associations
- Since we've defined probability as a long run frequency, it makes sense to use proportions observed in a sample as our best estimate of certain probabilities

|  | death | not |
| :--- | ---: | ---: |
| black | 38 | 142 |
| white | 46 | 152 |

- In the Florida Death Penalty study (the table shown above), we might estimate $P($ Death $\mid$ WhiteOffender $)=46 /(152+46)=$ 0.232


## Marginal, joint, and conditional probabilities

Contingency tables can help us understand three distinct types of probabilities used in scenarios involving two variables (ie: two random processes)

|  | death | not |
| :--- | ---: | ---: |
| black | 38 | 142 |
| white | 46 | 152 |

1) A marginal probability only considers a single variable, for example: $P($ Death $)=84 / 378=0.222$

## Marginal, joint, and conditional probabilities

Contingency tables can help us understand three distinct types of probabilities used in scenarios involving two variables (ie: two random processes)

|  | death | not |
| :--- | ---: | ---: |
| black | 38 | 142 |
| white | 46 | 152 |

1) A marginal probability only considers a single variable, for example: $P($ Death $)=84 / 378=0.222$
2) A joint probability simultaneous considers both variables, for example: $P($ Death $\cap$ WhiteOffender $)=46 / 378=0.165$

## Marginal, joint, and conditional probabilities

Contingency tables can help us understand three distinct types of probabilities used in scenarios involving two variables (ie: two random processes)

|  | death | not |
| :--- | ---: | ---: |
| black | 38 | 142 |
| white | 46 | 152 |

1) A marginal probability only considers a single variable, for example: $P($ Death $)=84 / 378=0.222$
2) A joint probability simultaneous considers both variables, for example: $P$ (Death $\cap$ WhiteOffender) $=46 / 378=0.165$
3) A conditional probability considers one variable, under the assumption that the other has already been observed, for example: $P($ Death $\mid$ WhiteOffender $)=46 / 198=0.232$

## Practice

The table below describes survival of residents of Boston, MA in 1721 that were exposed to smallpox. Some of these residents had been inoculated using a controlled strain of smallpox:

|  | Lived | Died | Total |
| :--- | :---: | :---: | :---: |
| Inoculated | 238 | 6 | 244 |
| Not Inoculated | 5136 | 884 | 6020 |
| Total | 5374 | 890 | 6264 |

State whether each of the following is a marginal, joint, or conditional probability, then estimate it using the data presented above:

1) That a resident died from their exposure
2) That a resident died given they'd been inoculated
3) That a resident had been inoculated given they've died
4) That a randomly chosen resident was both inoculated and ended up dying

## Practice (solution)

1) $P($ Died $)=890 / 6264$, marginal
2) $P($ Died $\mid$ Inoculated $)=6 / 244$, conditional
3) $P($ Inoculated $\mid$ Died $)=6 / 890$, conditional
4) $P($ Inoculated $\cap$ Died $)=6 / 6264$, joint

## Summary

- We need to understand probability because most of the data we analyze is the consequence of one or more random processes:
- Sampling from a population, randomly assigning treatment and control groups, etc.


## Summary

- We need to understand probability because most of the data we analyze is the consequence of one or more random processes:
- Sampling from a population, randomly assigning treatment and control groups, etc.
- At its most basic level, probability involves three major rules:
- The addition rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- The complement rule: $P\left(A^{C}\right)=1-P(A)$
- The multiplication rule:

$$
P(A \text { and } B)=P(A) * P(B \mid A)=P(A \mid B) * P(B)
$$

