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Introduction

I Today our focus will be on statistical inference in the context
of multiple linear regression

I Most of what we learned when studying simple linear regression
will still apply

I Inference on the β parameters can be done using the
t-distribution

I We can use estimates of the error variance to find confidence
and prediction bands for E (y) and y respectively

I However, a new challenge is testing whether a group of
predictors, or even an entire model, is associated with an
outcome
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Example

I In the Ames Housing dataset, there are 6 different roof styles:
flat, gable, gambrel, hip, mansard, and shed
I We can ask ourselves, “roofing style a statistically meaningful

predictor of a home’s sale price?”
I “Roof.Style” is undoubtedly associated with factors such as a

home’s size, let’s consider model that adjusts for above ground
living area, “Gr.Liv.Area”, and year built, “Year.Built”
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Example

How would you interpret the role of the variable “Roof.Style” in
predicting “SalePrice” based upon the summary() output below?

m <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary(m)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.142637e+06 73237.087787 -29.256174965 1.122989e-160
## Roof.StyleGable -9.481512e+03 11942.249749 -0.793946845 4.273067e-01
## Roof.StyleGambrel -8.666126e+01 16833.248520 -0.005148219 9.958928e-01
## Roof.StyleHip 2.426333e+04 12067.086513 2.010703065 4.447106e-02
## Roof.StyleMansard -2.354797e+04 19150.050416 -1.229655761 2.189493e-01
## Roof.StyleShed 1.844943e+03 26540.688116 0.069513753 9.445866e-01
## Gr.Liv.Area 9.470399e+01 2.053604 46.115983794 0.000000e+00
## Year.Built 1.108064e+03 37.410132 29.619362931 4.526453e-164

“Hip” roof styles sell for significantly than with “Flat” styles (even
after adjustment), but is “Roof.Style” an important predictor of
price?
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Example - Takeaways

I Because “Roof.Style” is categorical (with 6 possibilities), it
needs 5 dummy variables to be incorporated into the model
I The β parameter linked to each dummy variable describes a

difference relative to the reference category
I However, just because one category significantly differs from

the reference category doesn’t necessarily mean we want to
include variable in the model
I To test for an association between “Roof.Style” and

“SalePrice”, we’ll need to do more than look at t-tests involving
a single β parameter
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Analysis of Variance

I Analysis of Variance (ANOVA) is a general statistical
framework for comparing any two nested models
I The main idea is to look at the residuals of each model and

determine whether their sum of squares differ by more than
could reasonably be explained by random chance

I The simplest example is the special case of one-way ANOVA
I In one-way ANOVA, the null hypothesis is that mean outcomes

across j different groups are all equal: H0 : µ1 = µ2 = . . . = µj
I This is akin comparing the regression model Outcome ~

Categorical Variable with an intercept only model using an
F -test
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F -tests

The F -test compares the sum of squared residuals for the two
models under consideration (ie: Outcome ~ Categorical
Variable and Outcome ~ 1 in one-way ANOVA)

F = (SSyy − SSE )/δk
SSE/(n − (k + 1))

I SSyy is the residual sum of squares for the smaller sub-model
I SSE is the residual sum of squares for the larger model of

interest
I δk is the difference in the number of parameters in the two

models
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F -tests (Ames Housing Example)

## Smaller model
m1 <- lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)

## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)

## ANOVA table
anova(m1, m2)

## Analysis of Variance Table
##
## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built
## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2351 5.7292e+12
## 2 2346 5.2822e+12 5 4.4699e+11 39.705 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Nested Models

I To reiterate, ANOVA can only be used when the two candidate
models are nested
I Two models are nested if the larger model contains every

predictor that is included in the smaller model (plus one or more
additional predictors that you’re looking to evaluate)

I The following models are nested:
I SalePrice ~ Gr.Liv.Area + Gr.Liv.Areaˆ2 (quadratic

regression) and SalePrice ~ Gr.Liv.Area (simple linear
regression)

I SalePrice ~ Gr.Liv.Area + Year.Built + Roof.Style
and SalePrice ~ Gr.Liv.Area

I The following models are not nested:
I SalePrice ~ Roof.Style + Year.Built and SalePrice

~ Gr.Liv.Area
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ANOVA Failure (non-nested models)

The following models are not nested, so the F -test falls apart (a
negative change in RSS and a non-existent F -value/p-value)
## Smaller model
m1 <- lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)

## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Year.Built, data = ah)

## ANOVA table
anova(m1, m2)

## Analysis of Variance Table
##
## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built
## Model 2: SalePrice ~ Roof.Style + Year.Built
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2351 5.7292e+12
## 2 2347 1.0071e+13 4 -4.3414e+12
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A Test of Overall Model Utility

I ANOVA also provides us a framework for assessing the overall
ability of an entire model
I This F -test is sometimes called the Omnibus F-test

I The Omnibus F-test statistically compares the model of
interest (ie: Outcome ~ x1 + x2 + ...) with an intercept
only model (ie: Outcome ~ 1)
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The Omnibus F-test in R

## Smaller model
m1 <- lm(SalePrice ~ 1, data = ah)

## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)

## ANOVA table
anova(m1, m2)

## Analysis of Variance Table
##
## Model 1: SalePrice ~ 1
## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2353 1.6518e+13
## 2 2346 5.2822e+12 7 1.1236e+13 712.89 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The Omnibus F-test in R

## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary(m2)

##
## Call:
## lm(formula = SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built,
## data = ah)
##
## Residuals:
## Min 1Q Median 3Q Max
## -480939 -27341 -3027 19628 288896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.143e+06 7.324e+04 -29.256 <2e-16 ***
## Roof.StyleGable -9.482e+03 1.194e+04 -0.794 0.4273
## Roof.StyleGambrel -8.666e+01 1.683e+04 -0.005 0.9959
## Roof.StyleHip 2.426e+04 1.207e+04 2.011 0.0445 *
## Roof.StyleMansard -2.355e+04 1.915e+04 -1.230 0.2189
## Roof.StyleShed 1.845e+03 2.654e+04 0.070 0.9446
## Gr.Liv.Area 9.470e+01 2.054e+00 46.116 <2e-16 ***
## Year.Built 1.108e+03 3.741e+01 29.619 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 47450 on 2346 degrees of freedom
## Multiple R-squared: 0.6802, Adjusted R-squared: 0.6793
## F-statistic: 712.9 on 7 and 2346 DF, p-value: < 2.2e-16
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Closing Remarks

I While t-tests involving dummy variables can provide an
indication that a categorical predictor is associated with an
outcome, ANOVA provides a better method of summarizing
the overall association

I ANOVA is also useful for justifying that model is useful beyond
just random chance
I You’ll often see the Omnibus F-test used as a statistical

justification for model’s predictive ability
I As we’ll soon see, ANOVA testing can serve as the basis for

variable selection algorithms, though other approaches tend to
be more widely used by statisticians


