Multiple Linear Regression - Analysis of Variance

Ryan Miller
\mathbf{X}

Introduction

- Today our focus will be on statistical inference in the context of multiple linear regression
- Most of what we learned when studying simple linear regression will still apply

Introduction

- Today our focus will be on statistical inference in the context of multiple linear regression
- Most of what we learned when studying simple linear regression will still apply
- Inference on the β parameters can be done using the t-distribution
- We can use estimates of the error variance to find confidence and prediction bands for $E(y)$ and y respectively

Introduction

- Today our focus will be on statistical inference in the context of multiple linear regression
- Most of what we learned when studying simple linear regression will still apply
- Inference on the β parameters can be done using the t-distribution
- We can use estimates of the error variance to find confidence and prediction bands for $E(y)$ and y respectively
- However, a new challenge is testing whether a group of predictors, or even an entire model, is associated with an outcome

Example

- In the Ames Housing dataset, there are 6 different roof styles: flat, gable, gambrel, hip, mansard, and shed
- We can ask ourselves, "roofing style a statistically meaningful predictor of a home's sale price?"
- "Roof.Style" is undoubtedly associated with factors such as a home's size, let's consider model that adjusts for above ground living area, "Gr.Liv.Area", and year built, "Year.Built"

Example

How would you interpret the role of the variable "Roof.Style" in predicting "SalePrice" based upon the summary() output below?

```
m <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary(m)$coefficients
```

\#\#	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
\#\# (Intercept)	$-2.142637 \mathrm{e}+06$	73237.087787	-29.256174965	$1.122989 \mathrm{e}-160$
\#\# Roof.StyleGable	$-9.481512 \mathrm{e}+03$	11942.249749	-0.793946845	$4.273067 \mathrm{e}-01$
\#\# Roof.StyleGambrel	$-8.666126 \mathrm{e}+01$	16833.248520	-0.005148219	$9.958928 \mathrm{e}-01$
\#\# Roof.StyleHip	$2.426333 \mathrm{e}+04$	12067.086513	2.010703065	$4.447106 \mathrm{e}-02$
\#\# Roof.StyleMansard	$-2.354797 \mathrm{e}+04$	19150.050416	-1.229655761	$2.189493 \mathrm{e}-01$
\#\# Roof.StyleShed	$1.844943 \mathrm{e}+03$	26540.688116	0.069513753	$9.445866 \mathrm{e}-01$
\#\# Gr.Liv.Area	$9.470399 \mathrm{e}+01$	2.053604	46.115983794	$0.000000 \mathrm{e}+00$
\#\# Year.Built	$1.108064 \mathrm{e}+03$	37.410132	29.619362931	$4.526453 \mathrm{e}-164$

Example

How would you interpret the role of the variable "Roof.Style" in predicting "SalePrice" based upon the summary() output below?

```
m <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary(m)$coefficients
```

\#\#	Estimate	Std. Error	t value	Pr $(>\|t\|)$
\#\# (Intercept)	$-2.142637 \mathrm{e}+06$	73237.087787	-29.256174965	$1.122989 \mathrm{e}-160$
\#\# Roof.StyleGable	$-9.481512 \mathrm{e}+03$	11942.249749	-0.793946845	$4.273067 \mathrm{e}-01$
\#\# Roof.StyleGambrel	$-8.666126 \mathrm{e}+01$	16833.248520	-0.005148219	$9.958928 \mathrm{e}-01$
\#\# Roof.StyleHip	$2.426333 \mathrm{e}+04$	12067.086513	2.010703065	$4.447106 \mathrm{e}-02$
\#\# Roof.StyleMansard	$-2.354797 \mathrm{e}+04$	19150.050416	-1.229655761	$2.189493 \mathrm{e}-01$
\#\# Roof.StyleShed	$1.844943 \mathrm{e}+03$	26540.688116	0.069513753	$9.445866 \mathrm{e}-01$
\#\# Gr.Liv.Area	$9.470399 \mathrm{e}+01$	2.053604	46.115983794	$0.000000 \mathrm{e}+00$
\#\# Year. Built	$1.108064 \mathrm{e}+03$	37.410132	29.619362931	$4.526453 \mathrm{e}-164$

"Hip" roof styles sell for significantly than with "Flat" styles (even after adjustment), but is "Roof.Style" an important predictor of price?

Example - Takeaways

- Because "Roof.Style" is categorical (with 6 possibilities), it needs 5 dummy variables to be incorporated into the model
- The β parameter linked to each dummy variable describes a difference relative to the reference category
- However, just because one category significantly differs from the reference category doesn't necessarily mean we want to include variable in the model
- To test for an association between "Roof.Style" and "SalePrice", we'll need to do more than look at t-tests involving a single β parameter

Analysis of Variance

- Analysis of Variance (ANOVA) is a general statistical framework for comparing any two nested models
- The main idea is to look at the residuals of each model and determine whether their sum of squares differ by more than could reasonably be explained by random chance

Analysis of Variance

- Analysis of Variance (ANOVA) is a general statistical framework for comparing any two nested models
- The main idea is to look at the residuals of each model and determine whether their sum of squares differ by more than could reasonably be explained by random chance
- The simplest example is the special case of one-way ANOVA
- In one-way ANOVA, the null hypothesis is that mean outcomes across j different groups are all equal: $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{j}$

Analysis of Variance

- Analysis of Variance (ANOVA) is a general statistical framework for comparing any two nested models
- The main idea is to look at the residuals of each model and determine whether their sum of squares differ by more than could reasonably be explained by random chance
- The simplest example is the special case of one-way ANOVA
- In one-way ANOVA, the null hypothesis is that mean outcomes across j different groups are all equal: $H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{j}$
- This is akin comparing the regression model Outcome ~ Categorical Variable with an intercept only model using an F-test

F-tests

The F-test compares the sum of squared residuals for the two models under consideration (ie: Outcome ~ Categorical Variable and Outcome ~ 1 in one-way ANOVA)

$$
F=\frac{\left(S S_{y y}-S S E\right) / \delta_{k}}{S S E /(n-(k+1))}
$$

- $S S_{y y}$ is the residual sum of squares for the smaller sub-model
- SSE is the residual sum of squares for the larger model of interest
- δ_{k} is the difference in the number of parameters in the two models

F-tests (Ames Housing Example)

```
## Smaller model
m1 <- lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)
## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
## ANOVA table
anova(m1, m2)
## Analysis of Variance Table
##
## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built
## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2351 5.7292e+12
## 2 2346 5.2822e+12 5 4.4699e+11 39.705 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Nested Models

- To reiterate, ANOVA can only be used when the two candidate models are nested
- Two models are nested if the larger model contains every predictor that is included in the smaller model (plus one or more additional predictors that you're looking to evaluate)

Nested Models

- To reiterate, ANOVA can only be used when the two candidate models are nested
- Two models are nested if the larger model contains every predictor that is included in the smaller model (plus one or more additional predictors that you're looking to evaluate)
- The following models are nested:
- SalePrice ~ Gr.Liv.Area + Gr.Liv.Area^2 (quadratic regression) and SalePrice ~ Gr.Liv.Area (simple linear regression)
- SalePrice ~ Gr.Liv.Area + Year.Built + Roof.Style and SalePrice ~ Gr.Liv.Area

Nested Models

- To reiterate, ANOVA can only be used when the two candidate models are nested
- Two models are nested if the larger model contains every predictor that is included in the smaller model (plus one or more additional predictors that you're looking to evaluate)
- The following models are nested:
- SalePrice ~ Gr.Liv.Area + Gr.Liv.Area^2 (quadratic regression) and SalePrice ~ Gr.Liv.Area (simple linear regression)
- SalePrice ~ Gr.Liv.Area + Year.Built + Roof.Style and SalePrice ~ Gr.Liv.Area
- The following models are not nested:
- SalePrice ~ Roof.Style + Year.Built and SalePrice ~ Gr.Liv.Area

ANOVA Failure (non-nested models)

The following models are not nested, so the F-test falls apart (a negative change in RSS and a non-existent F-value $/ p$-value)

```
## Smaller model
m1 <- lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)
## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Year.Built, data = ah)
## ANOVA table
anova(m1, m2)
## Analysis of Variance Table
##
## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built
## Model 2: SalePrice ~ Roof.Style + Year.Built
## Res.Df RSS Df Sum of Sq F Pr (>F)
## 1 2351 5.7292e+12
## 2 2347 1.0071e+13 4 -4.3414e+12
```


A Test of Overall Model Utility

- ANOVA also provides us a framework for assessing the overall ability of an entire model
- This F-test is sometimes called the Omnibus F-test
- The Omnibus F-test statistically compares the model of interest (ie: Outcome $\sim \mathrm{x} 1+\mathrm{x} 2+\ldots$) with an intercept only model (ie: Outcome ~ 1)

The Omnibus F-test in R

```
## Smaller model
m1 <- lm(SalePrice ~ 1, data = ah)
## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
## ANOVA table
anova(m1, m2)
## Analysis of Variance Table
##
## Model 1: SalePrice ~ 1
## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built
## Res.Df RSS Df Sum of Sq F Fr Pr (>F)
## 1 2353 1.6518e+13
## 2 2346 5.2822e+12 7 1.1236e+13 712.89 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


The Omnibus F-test in R

```
## Larger model
m2 <- lm(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary(m2)
##
## Call:
## lm(formula = SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built,
## data = ah)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -480939 & -27341 & -3027 & 19628 & 288896
\end{tabular}
##
## Coefficients:
\begin{tabular}{lrrrrr} 
\#\# & Estimate & Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & \(-2.143 \mathrm{e}+06\) & \(7.324 \mathrm{e}+04\) & -29.256 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
\#\# Roof.StyleGable & \(-9.482 \mathrm{e}+03\) & \(1.194 \mathrm{e}+04\) & -0.794 & 0.4273 \\
\#\# Roof.StyleGambrel & \(-8.666 \mathrm{e}+01\) & \(1.683 \mathrm{e}+04\) & -0.005 & 0.9959 \\
\#\# Roof.StyleHip & \(2.426 \mathrm{e}+04\) & \(1.207 \mathrm{e}+04\) & 2.011 & \(0.0445 *\) \\
\#\# Roof.StyleMansard & \(-2.355 \mathrm{e}+04\) & \(1.915 \mathrm{e}+04\) & -1.230 & 0.2189 \\
\#\# Roof.StyleShed & \(1.845 \mathrm{e}+03\) & \(2.654 \mathrm{e}+04\) & 0.070 & 0.9446 \\
\#\# Gr.Liv.Area & \(9.470 \mathrm{e}+01\) & \(2.054 \mathrm{e}+00\) & 46.116 & \(<2 \mathrm{e}-16 * * *\) \\
\#\# Year.Built & \(1.108 \mathrm{e}+03\) & \(3.741 \mathrm{e}+01\) & 29.619 & \(<2 \mathrm{e}-16\) ***
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 47450 on 2346 degrees of freedom
## Multiple R-squared: 0.6802, Adjusted R-squared: 0.6793
## F-statistic: 712.9 on 7 and 2346 DF, p-value: < 2.2e-16
```


Closing Remarks

- While t-tests involving dummy variables can provide an indication that a categorical predictor is associated with an outcome, ANOVA provides a better method of summarizing the overall association
- ANOVA is also useful for justifying that model is useful beyond just random chance
- You'll often see the Omnibus F-test used as a statistical justification for model's predictive ability
- As we'll soon see, ANOVA testing can serve as the basis for variable selection algorithms, though other approaches tend to be more widely used by statisticians

