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Introduction

» Today our focus will be on statistical inference in the context
of multiple linear regression
» Most of what we learned when studying simple linear regression
will still apply
» Inference on the 3 parameters can be done using the
t-distribution
» We can use estimates of the error variance to find confidence
and prediction bands for E(y) and y respectively

» However, a new challenge is testing whether a group of
predictors, or even an entire model, is associated with an
outcome



» In the Ames Housing dataset, there are 6 different roof styles:
flat, gable, gambrel, hip, mansard, and shed
» We can ask ourselves, “roofing style a statistically meaningful
predictor of a home's sale price?”

> “Roof.Style” is undoubtedly associated with factors such as a
home's size, let's consider model that adjusts for above ground
living area, “Gr.Liv.Area”, and year built, “Year.Built"



Example

How would you interpret the role of the variable “Roof.Style” in
predicting “SalePrice” based upon the summary () output below?

m <- Im(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary (m) $coefficients

## Estimate Std. Error t value Pr(>1tl)
## (Intercept) -2.142637e+06 73237.087787 -29.256174965 1.122989e-160
## Roof.StyleGable -9.481512e+03 11942.249749 -0.793946845 4.273067e-01
## Roof.StyleGambrel -8.666126e+01 16833.248520 -0.005148219 9.958928e-01
## Roof.StyleHip 2.426333e+04 12067.086513 2.010703065 4.447106e-02
## Roof.StyleMansard -2.354797e+04 19150.050416 -1.229655761 2.189493e-01
## Roof.StyleShed 1.844943e+03 26540.688116 0.069513753 9.445866e-01
## Gr.Liv.Area 9.470399e+01 2.053604 46.115983794 0.000000e+00
## Year.Built 1.108064e+03 37.410132 29.619362931 4.526453e-164



Example
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predicting “SalePrice” based upon the summary () output below?

m <- Im(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)
summary (m) $coefficients

## Estimate Std. Error t value Pr(>1tl)
## (Intercept) -2.142637e+06 73237.087787 -29.256174965 1.122989e-160
## Roof.StyleGable -9.481512e+03 11942.249749 -0.793946845 4.273067e-01
## Roof.StyleGambrel -8.666126e+01 16833.248520 -0.005148219 9.958928e-01
## Roof.StyleHip 2.426333e+04 12067.086513 2.010703065 4.447106e-02
## Roof.StyleMansard -2.354797e+04 19150.050416 -1.229655761 2.189493e-01
## Roof.StyleShed 1.844943e+03 26540.688116 0.069513753 9.445866e-01
## Gr.Liv.Area .470399e+01 2.053604 46.115983794 0.000000e+00

= ©

## Year.Built .108064e+03 37.410132 29.619362931 4.526453e-164

“Hip” roof styles sell for significantly than with “Flat” styles (even
after adjustment), but is “Roof.Style” an important predictor of
price?



Example - Takeaways

» Because “Roof.Style” is categorical (with 6 possibilities), it
needs 5 dummy variables to be incorporated into the model
» The [ parameter linked to each dummy variable describes a
difference relative to the reference category
> However, just because one category significantly differs from
the reference category doesn't necessarily mean we want to
include variable in the model
» To test for an association between “Roof.Style” and
“SalePrice”, we'll need to do more than look at t-tests involving
a single 8 parameter
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» The main idea is to look at the residuals of each model and
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Analysis of Variance

» Analysis of Variance (ANOVA) is a general statistical
framework for comparing any two nested models
» The main idea is to look at the residuals of each model and
determine whether their sum of squares differ by more than
could reasonably be explained by random chance
» The simplest example is the special case of one-way ANOVA
» In one-way ANOVA, the null hypothesis is that mean outcomes
across j different groups are all equal: Hy : pt1 = po = ... =
» This is akin comparing the regression model OQutcome ~
Categorical Variable with an intercept only model using an
F-test



The F-test compares the sum of squared residuals for the two
models under consideration (ie: Outcome ~ Categorical
Variable and Outcome ~ 1 in one-way ANOVA)

o _ (S5, — SSE)/o
SSE/(n— (k + 1))

» SS,, is the residual sum of squares for the smaller sub-model

» SSE is the residual sum of squares for the larger model of
interest

» § is the difference in the number of parameters in the two
models



F-tests (Ames Housing Example)

## Smaller model
ml <- 1lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)

## Larger model
m2 <- 1m(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)

## ANOVA table
anova(ml, m2)

## Analysis of Variance Table

## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built

## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 2351 5.7292e+12

## 2 2346 5.2822e+12 5 4.4699e+11 39.705 < 2.2e-16 **x

## ——-

## Signif. codes: 0 '#*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Nested Models

» To reiterate, ANOVA can only be used when the two candidate
models are nested

» Two models are nested if the larger model contains every
predictor that is included in the smaller model (plus one or more
additional predictors that you're looking to evaluate)

» The following models are nested:

» SalePrice ~ Gr.Liv.Area + Gr.Liv.Area"2 (quadratic
regression) and SalePrice ~ Gr.Liv.Area (simple linear
regression)

» SalePrice ~ Gr.Liv.Area + Year.Built + Roof.Style
and SalePrice ~ Gr.Liv.Area

» The following models are not nested:

P> SalePrice ~ Roof.Style + Year.Built and SalePrice

~ Gr.Liv.Area



ANOVA Failure (non-nested models)

The following models are not nested, so the F-test falls apart (a

negative change in RSS and a non-existent F-value/p-value)

## Smaller model
ml <- 1lm(SalePrice ~ Gr.Liv.Area + Year.Built, data = ah)

## Larger model
m2 <- 1m(SalePrice ~ Roof.Style + Year.Built, data = ah)

## ANOVA table
anova(ml, m2)

## Analysis of Variance Table

## Model 1: SalePrice ~ Gr.Liv.Area + Year.Built
## Model 2: SalePrice ~ Roof.Style + Year.Built
##  Res.Df RSS Df  Sum of Sq F Pr(>F)
## 1 2351 5.7292e+12

## 2 2347 1.0071e+13 4 -4.3414e+12



A Test of Overall Model Utility

> ANOVA also provides us a framework for assessing the overall
ability of an entire model
» This F-test is sometimes called the Omnibus F-test

» The Omnibus F-test statistically compares the model of
interest (ie: Outcome ~ x1 + x2 + ...) with an intercept
only model (ie: Outcome ~ 1)



The Omnibus F-test in R

## Smaller model
ml <- 1lm(SalePrice ~ 1, data = ah)

## Larger model
m2 <- 1m(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)

## ANOVA table
anova(ml, m2)

## Analysis of Variance Table

## Model 1: SalePrice ~ 1

## Model 2: SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built

##  Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 2353 1.6518e+13

## 2 2346 5.2822e+12 7 1.1236e+13 712.89 < 2.2e-16 **x

## -

## Signif. codes: 0 '#*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1



The Omnibus F-test in R

## Larger model
m2 <- 1m(SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built, data = ah)

summary (m2)

##

## Call:

## lm(formula = SalePrice ~ Roof.Style + Gr.Liv.Area + Year.Built,
## data = ah)

##

## Residuals:

## Min 1Q Median 3Q Max

## -480939 -27341  -3027 19628 288896

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) -2.143e+06 7.324e+04 -29.256 <2e-16 x¥x*
## Roof.StyleGable -9.482e+03 1.194e+04 -0.794 0.4273

## Roof.StyleGambrel -8.666e+01 1.683e+04 -0.005 0.9959

## Roof.StyleHip 2.426e+04 1.207e+04 2.011 0.0445 *
## Roof.StyleMansard -2.355e+04 1.915e+04 -1.230 0.2189

## Roof.StyleShed 1.845e+03 2.654e+04 0.070 0.9446

## Gr.Liv.Area 9.470e+01 2.054e+00 46.116  <2e-16 ***
## Year.Built 1.108e+03 3.741e+01 29.619  <2e-16 *x*x*
## ———

## Signif. codes: O '#**' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 47450 on 2346 degrees of freedom
## Multiple R-squared: 0.6802, Adjusted R-squared: 0.6793
## F-statistic: 712.9 on 7 and 2346 DF, p-value: < 2.2e-16



Closing Remarks

» While t-tests involving dummy variables can provide an
indication that a categorical predictor is associated with an
outcome, ANOVA provides a better method of summarizing
the overall association

» ANOVA is also useful for justifying that model is useful beyond
just random chance

» You'll often see the Omnibus F-test used as a statistical
justification for model’s predictive ability

> As we'll soon see, ANOVA testing can serve as the basis for
variable selection algorithms, though other approaches tend to
be more widely used by statisticians



