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Linear Regression - Model Comparsions

Ryan Miller
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Introduction

I Most applications require the data analyst to choose between
competing models
I Is Tip ~ TotBill a better model than Tip ~ Size?
I Is Tip ~ TotBill + Size better than both? How would you

know?
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Quantifying Model Fit

I A good model will have fitted values (predictions) that are
close to the observed y -values
I Thus, we might measure the distance between E (y) and the

observed values of y to objectively compare the fit of two
competing models

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

I Root mean squared error, often abbreviated RMSE , is
perhaps the most common measure of fit
I Models with more accurate predictions (lower average values of

yi − ŷi) will have smaller RMSE
I It’s logical to favor the model with the smallest RMSE among

our candidate models
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yi − ŷi) will have smaller RMSE
I It’s logical to favor the model with the smallest RMSE among

our candidate models



4/14

Overfitting

I Unfortunately, in-sample RMSE will always favor larger, more
complex models
I This tendency is known as overfitting
I Conceptually, the issue is that complex models can become so

tailored to what was observed in the sample data that they are
no longer a good representation of the population

I The example on the next slide is from our lab this week, it
adds complexity to the model Tip ~ TotBill + ... by
adding variables that are just random values from a Normal
distribution
I How do you think adding purely random values as extra

predictors will impact the in-sample RMSE?
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Overfitting

tips <- read.csv("https://remiller1450.github.io/data/Tips.csv")

## Add random values as three extra variables to Tips
tips$R1 <- rnorm(nrow(tips))
tips$R2 <- rnorm(nrow(tips))
tips$R3 <- rnorm(nrow(tips))

## Build bigger and bigger models using these non-sensical variables
m1 <- lm(Tip ~ TotBill, data = tips)
m2 <- lm(Tip ~ TotBill + R1, data = tips)
m3 <- lm(Tip ~ TotBill + R1 + R2, data = tips)
m4 <- lm(Tip ~ TotBill + R1 + R2 + R3, data = tips)

## Calculate RMSE for each model
rmse1 <- sqrt(1/nrow(tips)*sum((tips$Tip - m1$fitted.values)^2))
rmse2 <- sqrt(1/nrow(tips)*sum((tips$Tip - m2$fitted.values)^2))
rmse3 <- sqrt(1/nrow(tips)*sum((tips$Tip - m3$fitted.values)^2))
rmse4 <- sqrt(1/nrow(tips)*sum((tips$Tip - m4$fitted.values)^2))

## Notice how prediction errors get smaller! (try re-running multiple times)
print(c(rmse1,rmse2,rmse3,rmse4))

## [1] 1.017850 1.016369 1.016304 1.016134
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The Bias vs. Variance Tradeoff

I As a model includes more complexity, it becomes less biased
(think about what happens if you omit a quadratic term for a
truly quadratic relationship)
I However, additional complexity will also increase a model’s

variance
I If a model is too complex, it might fit the sample data very

well (low bias) but it’s coefficients could change dramatically if
data is added or removed (high variance)
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The Bias vs. Variance Tradeoff
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I Simple linear regression is biased because it doesn’t account for
the curvature in the true relationship between X and Y

I However, it is shows low variance, fitting it to a different
sample doesn’t change much
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The Bias vs. Variance Tradeoff
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I This model is very capable of capturing the curvature in the
true relationship between X and Y

I However, it contains too many parameters, it changes
dramatically depending on the specific sample that it is fit to
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Out-of-Sample Prediction

I Overfitting typically occurs when the same data to train and
test the model
I For linear regression, “training” refers to estimating the model’s

coefficients (β0, β1, etc.)
I “Testing” refers to evaluating a trained model, for example by

calculating RMSE =
√

1
n

∑
i=1 n(yi − ŷi)2

I Because β̂0 and β̂1 are found my minimizing the squared
residuals in the sample data, you’d expect the RMSE to be
lower on the the training data than if the model were applied
to a completely different sample from the same population
I An unbiased assessment of a model’s RMSE would use different

data for training and testing
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Cross Validation

I Cross-validation works by using different subsets of data for
model training and testing
I We will focus on k-fold cross-validation, which uses the

following algorithm:

1. Randomly divide the original dataset into k equally sized,
non-overlapping subsets

2. Fit the candidate model using data from k − 1 folds, then find
predicted values (ŷi ’s) for kth fold (the “left out” fold)

3. Repeat step two until each fold has been left out exactly once,
resulting in an out-of-sample prediction for each observation in
the dataset
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Cross Validation
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Cross Validation

Let’s revisit the earlier example of adding three predictors that were
just random values to the Tips dataset:

Tip = TotBill Tip = TotBill + R1 + R2 + R3
out-of-sample 1.027 1.038
in-sample 1.018 1.013
I Notice how using random values as predictors lowers the

in-sample RMSE , but raises the cross-validated RMSE
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Other Model Comparison Tools

I Cross-validation is extremely general, so it’s fast becoming the
most widely used method of comparing competing models

I In the context of linear regression, here are a few other popular
tools (we’ll cover these in greater detail later on):
I Adjusted R2 - A modified version of R2 that adjusts for the

number of parameters in the model. Higher values of Adjusted
R2 indicate better models.

I AIC (Akaike Information Criteria) - a numeric “score” that uses
a model’s goodness of fit (log-likelihood) and a penalty for the
number of parameters. Lower values of AIC indicate superior
models.

I BIC (Bayesian Information Criteria) - a numeric “score” that
uses a model’s goodness of fit (log-likelihood) and a penalty for
the number of parameters that also incorporates sample size.
Lower values of BIC indicate superior models.
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Closing Remarks

I Models should be chosen on the basis of out-of-sample
performance, not in-sample performance
I Cross-validation provides a general method of estimating

out-of-sample performance that can be applied to nearly any
situation

I Other methods like Adjusted R2, AIC, and BIC will
approximately track out-of-sample performance
I AIC and BIC are popular among statisticians, they can be used

to compare any likelihood-based models
I Adjusted R2 is popular in applied fields, it’s thought to be more

easily interpreted
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