Multiple Linear Regression - Interactions

Ryan Miller

- One of the beauties of multiple regression is its capacity to isolate the distinct effects for two (or more) predictors of a single outcome
 - However, sometimes predictors do not make independent contributions towards the outcome, and instead work synergistically to produce an outcome

- Let's look at the relationship between above ground living area and sale price for 1Story and 2Story homes in the Ames Housing dataset
 - Recall the coefficient for the dummy variable "House.Style2Story" in is negative, how did we interpret this?

m1 <- lm(SalePrice ~ House.Style + Gr.Liv.Area, data = ah)
m1\$coefficients</pre>

(Intercept) House.Style2Story Gr.Liv.Area ## -7931.5874 -48161.2973 141.7925

Categorical-Quantitative Interactions

- If two homes are the same size, our model predicts the "2Story" home will be cheaper
 - Further, this model estimates a single, adjusted slope for "Gr.Liv.Area" (regardless of whether a home is "1Story" or "2Story")

Above Ground sq. ft

Categorical-Quantitative Interactions

Now let's consider a model with an interaction between "House.Style" and "Gr.Liv.Area"

m2 <- lm(SalePrice ~ House.Style + Gr.Liv.Area + House.Style*Gr.Liv.Area, data = ah)

Above Ground sq. ft

Categorical-Quantitative Interactions

The interaction term allows for different slopes depending upon the value of the "House.Style" dummy variable

- When the dummy variable takes on a value of 0, 155.6 is the slope (in the "Gr.Liv.Area" dimension)
- When the dummy variable takes on a value of 1, 155.6 27.9 = 127.7 is the slope

m2\$coefficients

##	(Intercept)	House.Style2Story
##	-26041.68634	-3758.60579
##	Gr.Liv.Area	House.Style2Story:Gr.Liv.Area
##	155.55156	-27.92985

Quantitative-Quantitative Interactions

- The same general concepts apply to interactions between two quantitative variables, though interpretation can be more difficult
 - The coefficients of the model SalePrice ~ Year.Built + Gr.Liv.Area + Year.Built*Gr.Liv.Area are shown below
 - Why is the coefficient of Gr.Liv.Area negative in this model?

m4 <- lm(SalePrice ~ Year.Built + Gr.Liv.Area + Year.Built*Gr.Liv.Area, data = ah)
m4\$coefficients</pre>

(Intercept)
29162.4122638
Year.Built:Gr.Liv.Area
0.7250126

Year.Built Gr.Liv.Area 3.7255782 -1334.7456056

- The estimated slope in the "Gr.Liv.Area" dimension will be different for each value of "Year.Built"
 - For a home built in the year 0 (nonsensical), the effect of "Gr.Liv.Area" is -1334
 - For a home built in 1900, the effect of "Gr.Liv.Area" is -1334 + 0.725*1900 = 43.5
 - For a home built in 2010, the effect is -1334 + 0.725*2010 = 123.3

Quantitative-Quantitative Interactions

- Since there are now infinitely many slopes to consider, visualizing the model's predictions is arguably a more useful approach
 - This plot emphasizes that high values in both "Year.Built" and "Gr.Liv.Area" work in tandem to produce a high sale price

Visualizing the Model w/o an Intercation

When there's no interaction, we can see the slope is constant in each dimension

SalePrice

Year.Built

 A final scenario to consider is an interaction between two categorical predictors

This is equivalent to giving each cell in the two-way table it's own effect

mc <- lm(SalePrice - House.Style + Foundation + House.Style*Foundation, data = ah)
mc\$coefficients</pre>

##	(Intercept)	House.Style2Story
##	99151.573	40621.374
##	FoundationCBlock	FoundationPConc
##	47752.687	133014.245
##	FoundationSlab	FoundationStone
##	4778.733	16848.427
##	FoundationWood	House.Style2Story:FoundationCBlock
##	102848.427	-30670.578
##	House.Style2Story:FoundationPConc	House.Style2Story:FoundationSlab
##	-36807.409	-5132.251
##	House.Style2Story:FoundationStone	House.Style2Story:FoundationWood
##	7238.501	7378.626

Categorical-Categorical Interactions

- For example, in our data the 2Story PConc homes have a mean sale price of \$235,980
 - This is expressed by our model as: 99152 (intercept) + 40621 (main effect of 2Story) + 133014 (main effect of PConc) -36807 (interaction of 2Story and PConc)
- How could you use the model to find the mean sale price of 1Story Slab homes?

House.Style	Foundation	
		mean
1Story	BrkTil	99151.57
1Story	CBlock	146904.26
1Story	PConc	232165.82
1Story	Slab	103930.31
1Story	Stone	116000.00
1Story	Wood	202000.00
2Story	BrkTil	139772.95
2Story	CBlock	156855.06
2Story	PConc	235979.78
2Story	Slab	139419.43
2Story	Stone	163859.88
2Story	Wood	250000.00

- Interactions are one way of making linear regression models more flexible, but in doing so they can sometimes open up a can of worms
 - Even a relatively tame modeling application involving only 10 predictors results in ⁽¹⁰⁾₂ = 45 possible interactions to consider
- In most applications, statisticians will only consider interactions if there is sufficient rationale for doing so
 - This is usually based upon the scientific context of the modeling application and the current knowledge in that field

