
1/13

Multiple Linear Regression - Interactions

Ryan Miller
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Introduction

I One of the beauties of multiple regression is its capacity to
isolate the distinct effects for two (or more) predictors of a
single outcome
I However, sometimes predictors do not make independent

contributions towards the outcome, and instead work
synergistically to produce an outcome
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Categorical-Quantitative Interactions

I Let’s look at the relationship between above ground living area
and sale price for 1Story and 2Story homes in the Ames
Housing dataset
I Recall the coefficient for the dummy variable

“House.Style2Story” in is negative, how did we interpret this?

m1 <- lm(SalePrice ~ House.Style + Gr.Liv.Area, data = ah)
m1$coefficients

## (Intercept) House.Style2Story Gr.Liv.Area
## -7931.5874 -48161.2973 141.7925
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Categorical-Quantitative Interactions
I If two homes are the same size, our model predicts the “2Story”

home will be cheaper
I Further, this model estimates a single, adjusted slope for

“Gr.Liv.Area” (regardless of whether a home is “1Story” or
“2Story”)
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Categorical-Quantitative Interactions
I Now let’s consider a model with an interaction between

“House.Style” and “Gr.Liv.Area”

m2 <- lm(SalePrice ~ House.Style + Gr.Liv.Area + House.Style*Gr.Liv.Area, data = ah)
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Categorical-Quantitative Interactions

I The interaction term allows for different slopes depending upon
the value of the “House.Style” dummy variable
I When the dummy variable takes on a value of 0, 155.6 is the

slope (in the “Gr.Liv.Area” dimension)
I When the dummy variable takes on a value of 1, 155.6 - 27.9 =

127.7 is the slope

m2$coefficients

## (Intercept) House.Style2Story
## -26041.68634 -3758.60579
## Gr.Liv.Area House.Style2Story:Gr.Liv.Area
## 155.55156 -27.92985



7/13

Quantitative-Quantitative Interactions

I The same general concepts apply to interactions between two
quantitative variables, though interpretation can be more
difficult
I The coefficients of the model SalePrice ~ Year.Built +

Gr.Liv.Area + Year.Built*Gr.Liv.Area are shown below
I Why is the coefficient of Gr.Liv.Area negative in this model?

m4 <- lm(SalePrice ~ Year.Built + Gr.Liv.Area + Year.Built*Gr.Liv.Area, data = ah)
m4$coefficients

## (Intercept) Year.Built Gr.Liv.Area
## 29162.4122638 3.7255782 -1334.7456056
## Year.Built:Gr.Liv.Area
## 0.7250126
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Quantitative-Quantitative Interactions

I The estimated slope in the “Gr.Liv.Area” dimension will be
different for each value of “Year.Built”
I For a home built in the year 0 (nonsensical), the effect of

“Gr.Liv.Area” is -1334
I For a home built in 1900, the effect of “Gr.Liv.Area” is -1334 +

0.725*1900 = 43.5
I For a home built in 2010, the effect is -1334 + 0.725*2010 =

123.3
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Quantitative-Quantitative Interactions

I Since there are now infinitely many slopes to consider,
visualizing the model’s predictions is arguably a more useful
approach
I This plot emphasizes that high values in both “Year.Built” and

“Gr.Liv.Area” work in tandem to produce a high sale price
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Visualizing the Model w/o an Intercation

I When there’s no interaction, we can see the slope is constant
in each dimension
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Categorical-Categorical Interactions

I A final scenario to consider is an interaction between two
categorical predictors
I This is equivalent to giving each cell in the two-way table it’s

own effect

mc <- lm(SalePrice ~ House.Style + Foundation + House.Style*Foundation, data = ah)
mc$coefficients

## (Intercept) House.Style2Story
## 99151.573 40621.374
## FoundationCBlock FoundationPConc
## 47752.687 133014.245
## FoundationSlab FoundationStone
## 4778.733 16848.427
## FoundationWood House.Style2Story:FoundationCBlock
## 102848.427 -30670.578
## House.Style2Story:FoundationPConc House.Style2Story:FoundationSlab
## -36807.409 -5132.251
## House.Style2Story:FoundationStone House.Style2Story:FoundationWood
## 7238.501 7378.626
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Categorical-Categorical Interactions

I For example, in our data the 2Story PConc homes have a mean
sale price of $235,980
I This is expressed by our model as: 99152 (intercept) + 40621

(main effect of 2Story) + 133014 (main effect of PConc) -
36807 (interaction of 2Story and PConc)

I How could you use the model to find the mean sale price of
1Story Slab homes?

House.Style Foundation mean
1Story BrkTil 99151.57
1Story CBlock 146904.26
1Story PConc 232165.82
1Story Slab 103930.31
1Story Stone 116000.00
1Story Wood 202000.00
2Story BrkTil 139772.95
2Story CBlock 156855.06
2Story PConc 235979.78
2Story Slab 139419.43
2Story Stone 163859.88
2Story Wood 250000.00
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Closing Remarks

I Interactions are one way of making linear regression models
more flexible, but in doing so they can sometimes open up a
can of worms
I Even a relatively tame modeling application involving only 10

predictors results in
(10

2
)
= 45 possible interactions to consider

I In most applications, statisticians will only consider interactions
if there is sufficient rationale for doing so
I This is usually based upon the scientific context of the modeling

application and the current knowledge in that field


