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Ryan Miller



2/19

Introduction

I Logistic regression is a generalized linear model used when the
outcome variable is binary
I In comparison to other binary classification approaches (ie:

machine learning), logistic regression models are intrepretable
and allow for statistical inference

I Last week, our focus was understanding the roles of individual
predictor variables within these models
I This week, our focus will be on holistically evaluating and

comparing different models
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Credit Card Payments

I For risk management purposes, credit card companies will
predict the likelihood of their customers missing a payment in a
given month
I We’ll use data from publicly available research involving a

cross-sectional sample of 30,000 customers from a major credit
company in Taiwan

fr <- read.csv("https://remiller1450.github.io/data/Credit.csv")
table(fr$MISSED_PAYMENT)

##
## 0 1
## 23364 6636
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Summarizing a Logistic Regression Model

I In this application, the roles played by individual predictors are
likely secondary to the overall performance of the model
I If the company cannot model missed payments with a

reasonable degree of reliability, any inferences on the
explanatory variables are irrelevant

I How might you measure/quantify how well a model is able to
predict missed payments?
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Classification Accuracy

I A simple measure of a model’s ability is classification accuracy
I This is found by mapping the model’s predicted probabilities for

each data-point to predicted binary outcomes, then tallying the
proportion of these predictions that match the observed
categorical outcome
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Classification Accuracy

I The code below fits the logistic regression model
MISSED_PAYMENT ~ BILL_AMT1 and maps predicted
probabilities exceeding 0.5 to a predicted missed payment
I The model achieves approximately 78% accuracy, so is it a good

model?
m <- glm(MISSED_PAYMENT ~ BILL_AMT1, data = fr, family = "binomial")
pred_probs <- predict(m, type = "response")
t = 0.5
pred_class <- ifelse(pred_probs > t, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.7788
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Problems with Accuracy

There are a few issues we should consider when evaluating whether
a model’s classification accuracy is truly indicative of strong
predictive ability

1) What accuracy could be achieved by simply predicting every
data-point belongs to the most common category?

2) Is the model overfit to the sample data? That is, will the
model’s out-of-sample accuracy be substantially lower than its
in-sample accuracy
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Manipulating the Decision Threshold
I A simple starting point, is to change the threshold for a missed

payment from t = 0.5 to something lower
I Unfortunately this doesn’t do much for these data, adjusting

the threshold downward can only lead to lower overall accuracy
as more non-missed payments are classified as missed
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Cohen’s Kappa

I Cohen’s Kappa is an alternative that normalizes for class
imbalance in the data

κ = po−pe
1−pe

I po is the observed accuracy of the model being evaluated

I pe is the expected accuracy that could be achieved by
predicting every data-point belongs to the majority class
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Cohen’s Kappa

I As shown below, 77.88% of the customers in data did not miss
their payment, so pe = 0.7788
I Unfortunately, our model’s classification accuracy was also

77.88%, so po = 0.7788
I So, κ = 0.7788−0.778

1−0.7788 = 0, which suggests this model is
ineffective

table(fr$MISSED_PAYMENT)

##
## 0 1
## 23364 6636
23364/(23364 + 6636)

## [1] 0.7788
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A More Complex Model

Let’s now consider a model that uses every predictor in the dataset:

m <- glm(MISSED_PAYMENT ~ LIMIT_BAL + SEX + EDUCATION + MARRIAGE + AGE +
PAY_0 + PAY_2 + PAY_3 + PAY_4 + PAY_5 + PAY_6 +
BILL_AMT1 + BILL_AMT2 + BILL_AMT3 + BILL_AMT4 + BILL_AMT5 + BILL_AMT6 +
PAY_AMT1 + PAY_AMT2 + PAY_AMT3 + PAY_AMT4 + PAY_AMT5 + PAY_AMT5,
data = fr, family = "binomial")

pred_probs <- predict(m, type = "response")
t = 0.5
pred_class <- ifelse(pred_probs > t, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.8110667
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Finding a Threshold

We can further refine things by finding an optimal probability
threshold:
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data.frame(threshold = tseq[which.max(acc)], accuracy = acc[which.max(acc)])

## threshold accuracy
## 1 0.41 0.8177
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A More Complex Model

I Using a probability threshold of 0.41, this model can predict
missed payments 81.77% accuracy
I The corresponding Cohen’s kappa is 0.8177−0.7788

1−0.7788 = 0.18

I This model has some predictive ability, though not a whole lot
(recall κ ranges from 0 to 1)

I Unfortunately, we’re also ignoring that the model used a large
number of explanatory variables and in-sample accuracy
I How would you expect its out-of-sample accuracy to compare?
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Is the Model Overfit?

Cross-validation can be used to estimate out-of-sample performance:
set.seed(123)
fold_id <- sample(rep(1:5, length.out = nrow(fr)), size = nrow(fr))
preds <- numeric(nrow(fr))
for(k in 1:5){

## Subset the data
train <- fr[fold_id != k, ]
test <- fr[fold_id == k, ]

## Fit models on the data
m <- glm(MISSED_PAYMENT ~ LIMIT_BAL + SEX + EDUCATION + MARRIAGE + AGE +

PAY_0 + PAY_2 + PAY_3 + PAY_4 + PAY_5 + PAY_6 +
BILL_AMT1 + BILL_AMT2 + BILL_AMT3 + BILL_AMT4 + BILL_AMT5 + BILL_AMT6 +
PAY_AMT1 + PAY_AMT2 + PAY_AMT3 + PAY_AMT4 + PAY_AMT5 + PAY_AMT5,
data = train, family = "binomial")

## Store predictions
preds[fold_id == k] <- predict(m, newdata = test, type = "response")

}

## Out of sample accuracy
pred_class <- ifelse(preds >= 0.41, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.8171

Does the model appear to be overfit?
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Misclassification Errors

I As a final consideration, we might ask: “is it equally bad for
the model to predict”miss" for someone who makes their
payment as it is for it to predict “make” for someone who
misses their payment?"

I One way to explore the frequencies of each type of
misclassification is a confusion matrix:

table(fr$MISSED_PAYMENT, pred_class)

## pred_class
## 0 1
## 0 22042 1322
## 1 4165 2471
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Sensitivity and Specificity

The likelihood of each type of misclassification is captured in two
probabilities known as sensitivity and specificity:

1) Sensitivity - The probability of a true positive, or a case who
missed their payment being classified as “missed” or “1”

2) Specificity - The probability of a true negative, or a case who
made their payment being classified as “made” or “0”

I Because the confusion matrix will change in response to the
classification threshold, t, so will the sensitivity and specificity
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ROC Analysis

The trade-off between sensitivity and specificity, taken across a
variety of decision thresholds, can be expressed via a Receiver
Operating Characteristic (ROC) curve:
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AUC

I The area under the ROC curve (AUC) provides an overall
model summary
I A model with no predictive value will have an AUC of 0.5

(imagine this as a straight line connecting (0,0) and (1,1))
I What AUC value will a perfect model achieve?

## AUC for our missed payment model
roc_plot <- ggplot(df, aes(d = class, m = pi)) + geom_roc()
calc_auc(roc_plot)

## PANEL group AUC
## 1 1 -1 0.7241173



19/19

Closing Remarks

I We’ve now covered a few different ways to quantify the
performance of a logistic regression model:

Metric Easily understood Adjusts for imbalance Invariant to t

Accuracy YES NO NO
Cohen’s Kappa SORT OF YES NO
AUC NO YES YES

I Depending upon the details of your application, one of these
metrics might be preferable.

I Additionally, if overfitting is a concern, you should use
cross-validation to estimate the out-of-sample version of your
metric of choice.


