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Introduction

P> Logistic regression is a generalized linear model used when the
outcome variable is binary
> In comparison to other binary classification approaches (ie:
machine learning), logistic regression models are intrepretable
and allow for statistical inference
> Last week, our focus was understanding the roles of individual
predictor variables within these models
» This week, our focus will be on holistically evaluating and
comparing different models



Credit Card Payments

P For risk management purposes, credit card companies will
predict the likelihood of their customers missing a payment in a
given month

» We'll use data from publicly available research involving a
cross-sectional sample of 30,000 customers from a major credit
company in Taiwan

fr <- read.csv("https://remiller1450.github.io/data/Credit.csv")
table (fr$MISSED_PAYMENT)

##
## [ 1
## 23364 6636



Summarizing a Logistic Regression Model

» In this application, the roles played by individual predictors are
likely secondary to the overall performance of the model
» |If the company cannot model missed payments with a
reasonable degree of reliability, any inferences on the
explanatory variables are irrelevant
» How might you measure/quantify how well a model is able to
predict missed payments?



Classification Accuracy

» A simple measure of a model's ability is classification accuracy
» This is found by mapping the model's predicted probabilities for
each data-point to predicted binary outcomes, then tallying the
proportion of these predictions that match the observed
categorical outcome



Classification Accuracy

» The code below fits the logistic regression model
MISSED_PAYMENT ~ BILL_AMT1 and maps predicted

probabilities exceeding 0.5 to a predicted missed payment
» The model achieves approximately 78% accuracy, so is it a good

model?
m <- glm(MISSED_PAYMENT ~ BILL_AMT1, data = fr, family = "binomial")
pred_probs <- predict(m, type = "response")
t = 0.5
pred_class <- ifelse(pred_probs > t, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.7788



Problems with Accuracy

There are a few issues we should consider when evaluating whether
a model’s classification accuracy is truly indicative of strong
predictive ability

1) What accuracy could be achieved by simply predicting every
data-point belongs to the most common category?
2) Is the model overfit to the sample data? That is, will the

model's out-of-sample accuracy be substantially lower than its
in-sample accuracy



Manipulating the Decision Threshold

P> A simple starting point, is to change the threshold for a missed
payment from t = 0.5 to something lower
» Unfortunately this doesn't do much for these data, adjusting
the threshold downward can only lead to lower overall accuracy
as more non-missed payments are classified as missed
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Cohen’s Kappa

» Cohen’s Kappa is an alternative that normalizes for class
imbalance in the data

P> p, is the observed accuracy of the model being evaluated

P> p. is the expected accuracy that could be achieved by
predicting every data-point belongs to the majority class



Cohen’s Kappa

» As shown below, 77.88% of the customers in data did not miss
their payment, so p. = 0.7788

» Unfortunately, our model’s classification accuracy was also

77.88%, so p, = 0.7788

» So, k= % = 0, which suggests this model is

ineffective

table (Fr$MISSED_PAYMENT)

##

## 0 1

## 23364 6636
23364/(23364 + 6636)

## [1] 0.7788



A More Complex Model

Let's now consider a model that uses every predictor in the dataset:

m <- glm(MISSED_PAYMENT -~ LIMIT_BAL + SEX + EDUCATION + MARRIAGE + AGE +
PAY_O + PAY_2 + PAY_3 + PAY_4 + PAY_5 + PAY 6 +
BILL_AMT1 + BILL_AMT2 + BILL_AMT3 + BILL_AMT4 + BILL_AMT5 + BILL_AMT6 +
PAY_AMT1 + PAY_AMT2 + PAY_AMT3 + PAY_AMT4 + PAY_AMT5 + PAY_AMT5,
data = fr, family = "binomial)
pred_probs <- predict(m, type = "response")
t = 0.5
pred_class <- ifelse(pred_probs > t, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.8110667



Finding a Threshold

We can further refine things by finding an optimal probability
threshold:

Classification Accuracy
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data.frame(threshold = tseq[which.max(acc)], accuracy = acc[which.max(acc)])

##  threshold accuracy

## 1 0.41 0.8177 X



A More Complex Model

» Using a probability threshold of 0.41, this model can predict

missed payments 81.77% accuracy

» The corresponding Cohen's kappa is 28177=0.7788 _ 0 1g

1-0.7788



A More Complex Model

» Using a probability threshold of 0.41, this model can predict
missed payments 81.77% accuracy
» The corresponding Cohen's kappa is % =0.18
» This model has some predictive ability, though not a whole lot
(recall k ranges from 0 to 1)



A More Complex Model

» Using a probability threshold of 0.41, this model can predict
missed payments 81.77% accuracy
» The corresponding Cohen's kappa is % =0.18
» This model has some predictive ability, though not a whole lot
(recall k ranges from 0 to 1)
» Unfortunately, we're also ignoring that the model used a large
number of explanatory variables and in-sample accuracy
» How would you expect its out-of~sample accuracy to compare?



Is the Model Overfit?

Cross-validation can be used to estimate out-of-sample performance:

set.seed(123)

fold_id <- sample(rep(1:5, length.out = nrow(fr)), size = nrow(fr))
preds <- numeric(nrow(fr))

for(k in 1:5){

## Subset the data
train <- fr(fold_id != k, ]
test <- fr[fold_id == k, ]

## Fit models on the data
m <- glm(MISSED_PAYMENT ~ LIMIT_BAL + SEX + EDUCATION + MARRIAGE + AGE +
PAY_O + PAY_2 + PAY_3 + PAY_4 + PAY_5 + PAY 6 +
BILL_AMT1 + BILL_AMT2 + BILL_AMT3 + BILL_AMT4 + BILL_AMT5 + BILL_AMT6 +
PAY_AMT1 + PAY_AMT2 + PAY_AMT3 + PAY_AMT4 + PAY_AMTS + PAY_AMTS,
data = train, family = "binomial")

## Store predictions

preds[fold_id == k] <- predict(m, newdata = test, type = "response")
}
## Out of sample accuracy

pred_class <- ifelse(preds >= 0.41, 1, 0)
sum(pred_class == fr$MISSED_PAYMENT)/nrow(fr)

## [1] 0.8171

Does the model appear to be overfit? X



Misclassification Errors

» As a final consideration, we might ask: “is it equally bad for
the model to predict"miss" for someone who makes their

payment as it is for it to predict “make” for someone who
misses their payment?"



Misclassification Errors

» As a final consideration, we might ask: “is it equally bad for
the model to predict"miss" for someone who makes their
payment as it is for it to predict “make” for someone who
misses their payment?"

> One way to explore the frequencies of each type of
misclassification is a confusion matrix:

table (fr$MISSED_PAYMENT, pred_class)

## pred_class

## 0 1
## 0 22042 1322
## 1 4165 2471



Sensitivity and Specificity

The likelihood of each type of misclassification is captured in two
probabilities known as sensitivity and specificity:

1) Sensitivity - The probability of a true positive, or a case who
missed their payment being classified as “missed” or “1”
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Sensitivity and Specificity

The likelihood of each type of misclassification is captured in two
probabilities known as sensitivity and specificity:

1) Sensitivity - The probability of a true positive, or a case who
missed their payment being classified as “missed” or “1”

2) Specificity - The probability of a true negative, or a case who
made their payment being classified as “made” or “0"

» Because the confusion matrix will change in response to the
classification threshold, t, so will the sensitivity and specificity



NOIGWAVEIVIIS

The trade-off between sensitivity and specificity, taken across a
variety of decision thresholds, can be expressed via a Receiver
Operating Characteristic (ROC) curve:

1.00-

0.75-

Sensitivity
o
&
3

0.25-

050 075 100
1 - Specificity



» The area under the ROC curve (AUC) provides an overall
model summary
» A model with no predictive value will have an AUC of 0.5
(imagine this as a straight line connecting (0,0) and (1,1))
» What AUC value will a perfect model achieve?

## AUC for our missed payment model
roc_plot <- ggplot(df, aes(d = class, m = pi)) + geom_roc()
calc_auc(roc_plot)

##  PANEL group AUC
## 1 1 -1 0.7241173



Closing Remarks

> We've now covered a few different ways to quantify the
performance of a logistic regression model:

Metric Easily understood Adjusts for imbalance Invariant to t
Accuracy YES NO NO
Cohen's Kappa SORT OF YES NO
AUC NO YES YES

» Depending upon the details of your application, one of these
metrics might be preferable.

> Additionally, if overfitting is a concern, you should use
cross-validation to estimate the out-of-sample version of your
metric of choice.



