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Logistic Regression - Statistical Inference

Ryan Miller
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Introduction

This week our focus is on logistic regression, a type of generalized
linear model (GLM):

logit(y) = β0 + β1x1 + β2x2 + . . .

Recall that all GLMs have the following components:

I Systematic component - a linear combination of predictor
variables (ie: β0 + β1x1 + β2x2 + . . .)

I Random component - a probability distribution for Y , the
outcome variable

I Link function - a function that links E (Y ) to the model’s
systematic component
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The Binomial Distribution

I Logistic Regression is a statistical model due its use of the
binomial probability distribution

I Consider a binary random variable, Y , with an underlying
probability of “success” denoted by π
I In mathematical shorthand, Y ∼ binom(1, π)
I In this framework, notice E (Y ) = π

I In logistic regression, we model g(π) as a linear combination of
predictors
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Statistical Inference

I Theoretically, statistical inference could be done on the
outcome, y , using a binomial distribution
I Practically, it’s more useful to apply inferential methods to the

model coefficient estimates, β̂1, . . . , β̂p

I Without getting in to the details, maximum likelihood theory
provides a Normal approximation for these estimates
I β̂p ∼ N(βp, SE )
I Similar to what we saw in linear regression, the summary()

function provides a default test of H0 : βp = 0
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Example

xub$to_diff <- xub$TOV - xub$TOV.1
m <- glm(win ~ to_diff, data = xub, family = "binomial")
summary(m)

##
## Call:
## glm(formula = win ~ to_diff, family = "binomial", data = xub)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5671 -1.3653 0.7045 0.9024 1.2404
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8814 0.5403 1.631 0.103
## to_diff 0.1286 0.1285 1.000 0.317
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 23.699 on 18 degrees of freedom
## Residual deviance: 22.450 on 17 degrees of freedom
## AIC: 26.45
##
## Number of Fisher Scoring iterations: 4
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Inference and Odds Ratios

I In the previous model, the estimated intercept was β̂0 = 0.8814
I Is it meaningful to interpret this coefficient? What does it tell

us?

I exp(0.8814) = 2.414
I This is the odds ratio of the odds of XU winning relative to the

odds of their opponent winning when both teams have an equal
number of turnovers is 2.414

I However, notice the p-value testing H0 : β0 = 0 is 0.103, so we
might not be statistically convinced XU is really more likely to
win in this situation
I Further, recognize exp(0) = 1, which implies an odds ratio of 1

indicates an equal likelihood of XU winning and their opponent
winning
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The Inverse-Logit Transformation

I One of the most useful aspects of logistic regression is the
model’s ability to generate predicted probabilities for various
combinations of predictors
I Determining these probabilities requires the use of the

inverse-logit transformation on the model’s linear predictor
(often denoted η)

logit(y) = β0 + β1x1 + β2x2 + . . . = η

π = exp(β0 + β1x1 + β2x2 + . . .)
1 + exp(β0 + β1x1 + β2x2 + . . .) = exp(η)

1 + exp(η)
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Confidence Intervals and the Inverse-Logit Transformation

I Often, we’d like to reported predicted probabilities alongside
confidence intervals
I However, confidence intervals for predicted probabilities should

be calculated on the logit scale, then the end-points should be
transformed

I Otherwise, the intervals run into Normality/boundary problems
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Example (Don’t do this)
xl <- seq(min(xub$to_diff), max(xub$to_diff), by = 0.1)
preds <- predict(m, newdata = data.frame(to_diff = xl), type = "response", se = TRUE)
plot(xl, preds$fit, type = "l", ylim = c(0,1.5), ylab = "Predicted Probability")
lines(xl, preds$fit + 1.96*preds$se.fit, lty = 2)
lines(xl, preds$fit - 1.96*preds$se.fit, lty = 2)
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Example (Do this instead)
inverse_logit = function(x){exp(x)/(1+exp(x))}
preds <- predict(m, newdata = data.frame(to_diff = xl), type = "link", se = TRUE)
plot(xl, inverse_logit(preds$fit), type = "l", ylim = c(0,1.5), ylab = "Predicted Probability")
lines(xl, inverse_logit(preds$fit + 1.96*preds$se.fit), lty = 2)
lines(xl, inverse_logit(preds$fit - 1.96*preds$se.fit), lty = 2)
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The Likelihood Ratio Test for Nested Models

I For linear regression, the F-test (ANOVA) allowed us to
statistically compare two nested models
I This allowed us to assess the overall impact of a categorical

predictor that was being represented by multiple dummy
variables

I It also allowed us to compare a model of interest to an
intercept-only model as an overall evaluation

I For logistic regression, the analogous statistical test is the
Likelihood ratio test
I ANOVA/the F-test compares a standardized ratio of sums of

squares, while the likelihood ratio test compares a ratio of
likelihoods
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The Likelihood Ratio Test for Nested Models

I Without getting too detailed, a larger likelihood indicates a
better fit to the sample data
I Thus, a likelihood ratio that sufficiently exceeds 1 will indicate

superiority of the larger model

I It can be shown that the distribution of the likelihood ratio,
under the null hypothesis that the models have equal
likelihoods, follows a Chi-squared distribution with degrees of
freedom equal to the difference in model parameters
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Example

library(lmtest)
m1 <- glm(win ~ to_diff, data = xub, family = "binomial")
m2 <- glm(win ~ to_diff + Location, data = xub, family = "binomial")
lrtest(m1, m2)

## Likelihood ratio test
##
## Model 1: win ~ to_diff
## Model 2: win ~ to_diff + Location
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 2 -11.2250
## 2 3 -7.6852 1 7.0796 0.007797 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Closing Remarks

I We’ve now introduced logistic regression and covered a few
important modes of statistical inference

I The main concept you need to be aware of is the role of the
logit link function
I In order to interpret model coefficients, you can use

exponentiation
I In order to calculate predicted probabilities (and associated

confidence intervals) you must use the inverse logit
transformation


