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Logistic Regression - Understanding Model
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Introduction

I Logistic regression is a generalized linear model for binary
outcomes
I As is the case for all GLMs, logistic regression involves a

probability distribution and therefore has a likelihood
I An implication is that most of the model selection approaches

we covered while studying multiple regression can be applied to
logistic regression
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Model Selection Criteria

Both the AIC and BIC model selection criteria can be directly
applied to the logistic regression setting:

I AIC = −Log-Likelihood + 2k
I BIC = −Log-Likelihood + log(n) ∗ k

Recall that both criteria aim to balance a model’s goodness of fit
(measured by the log-likelihood) and its complexity (measured by k,
the number of model parameters)
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Maximum Likelihood Estimation

I In maximum likelihood estimation, the goal is to solve for a set
of parameters that maximize the conditional probability of
observing the sample data given a specified probability model

I In logistic regression, each observed outcome follows a
Bernoulli distribution, which is just a binomial distribution with
n = 1 and a success probability of π
I Maximum likelihood estimation is the basis for the

log-likelihood in criteria like AIC and BIC
I Today we’ll work through a brief example akin to an intercept

only model (which implies all subjects having the same success
probability)
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Bernoulli Variables

I Suppose we observe a single outcome, y1 = 1, how likely was
this outcome?

I The probability of observing y1 = 1 is π
I Similarly, if we observe a second outcome, y2 = 0, the

probability of seeing this outcome is 1− π
I The likelihood function describes the joint probability of all of

the observed data
I If the data-points are independent, it can be expressed as a

product of individual likelihoods:

P(y) = P(y1) ∗ P(y2) ∗ . . . ∗ P(yn)
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Likelihood

We’re now ready to define the likelihood function:

L(y|π) = P(y1) ∗ P(y2) ∗ . . . ∗ P(yn)

=
n∏

i=1
πyi (1− π)1−yi

Logarithms are one-to-one, monotone transformations, so there’s no
difference in maximizing the likelihood or the log-likelihood:

l(y|π)) = log(L(y|π))

=
n∑

i=1
log(πyi (1− π)1−yi )

= log(π)
n∑

i=1
yi + log(1− π)

n∑
i=1

(1− yi)
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Maximizing the Likelihood

I The goal of maximum likelihood estimation is to find a value of
the parameter π that maximizes l(y|π))
I Not surprisingly, this can be down by differentiating with

respect to π, setting the resulting expression equal to zero, then
solving for the maximizer

l(y|π)) = log(π)
n∑

i=1
yi + log(1− π)

n∑
i=1

(1− yi)

∂l
∂π

=
∑n

i=1 yi

π
− sumn

i=1(1− yi)
1− π

set= 0
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Maximizing the Likelihood

I It’s easy to use algebra to solve for a closed form expression of
π̂, the value of π that maximizes the likelihood of the observed
data
I I’ll skip this, but the result should be unsurprising, the sample

proportion
∑n

i=1 yi/n is maximizer
I Instead, let’s look at a graph of the likelihood
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Maximizing the Likelihood
## Sample data
y <- c(1,1,1,0,0,1,0)

## Define log-likelihood function
log_lik <- function(pi, y){

log(pi)*sum(y) + log(1 - pi)*sum(1 - y)
}

## Plot the log-likelihood over all possible values of pi
pi_seq <- seq(0,1, by = 0.05)
plot(pi_seq, log_lik(pi = pi_seq, y = y), type = "l", ylab = "log-lik", xlab = "pi")
abline(v = sum(y)/length(y), lty = 2) ## sample proportion
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Comparing Different Models

I The likelihood of the observed data is maximized when
π =

∑n
i=1 yi/n

I Notice many other values of π near the sample proportion will
also fit the data almost as well

I These might be considered reasonable models for the observed
phenomenon

I In contrast, values closer to zero have a substantially lower
likelihood, and therefore represent models that do not fit the
sample data very well
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Remarks

I The specific numeric value of the log-likelihood doesn’t much
in an absolute sense, but it means a lot in a relative one
I So long as the data and the underlying probability distribution

remain the same, the log-likelihood can be used to compare the
relative fit of different proposed model to the sample data

I Logistic regression involves an added layer of complexity
beyond the example we looked at, as logit(π) = β0 + β1X1 . . .
I We’d now need to solve for a combination of parameter values

that maximize the likelihood
I There’s no closed-form solution to this problem, but it’s pretty

easy for optimization algorithms to find it using numerical
approaches
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Connection to AIC/BIC

I Hopefully this brief example provides some perspective on the
log-likelihood component of the AIC and BIC model selection
criteria
I The main takeaway is that a model’s log-likelihood is a relative

measure describing how well it fits the sample data
I Model selection criteria, such as AIC or BIC, aim to balance fit

with parsimony
I They are suitable for comparing non-nested models with

different levels of complexity
I They also can form the basis of stepwise selection algorithms


