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Introduction

> Logistic regression is a generalized linear model for binary

outcomes
P As is the case for all GLMs, logistic regression involves a

probability distribution and therefore has a likelihood
» An implication is that most of the model selection approaches
we covered while studying multiple regression can be applied to
logistic regression



Model Selection Criteria

Both the AIC and BIC model selection criteria can be directly
applied to the logistic regression setting:

» AIC = —Log-Likelihood + 2k
» BIC = —Log-Likelihood + log(n) * k

Recall that both criteria aim to balance a model's goodness of fit
(measured by the log-likelihood) and its complexity (measured by k,
the number of model parameters)



Maximum Likelihood Estimation

» In maximum likelihood estimation, the goal is to solve for a set
of parameters that maximize the conditional probability of
observing the sample data given a specified probability model



Maximum Likelihood Estimation

» In maximum likelihood estimation, the goal is to solve for a set
of parameters that maximize the conditional probability of
observing the sample data given a specified probability model

» In logistic regression, each observed outcome follows a
Bernoulli distribution, which is just a binomial distribution with
n =1 and a success probability of

» Maximum likelihood estimation is the basis for the
log-likelihood in criteria like AIC and BIC

» Today we'll work through a brief example akin to an intercept
only model (which implies all subjects having the same success
probability)



Bernoulli Variables

» Suppose we observe a single outcome, y; = 1, how likely was
this outcome?
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Bernoulli Variables

» Suppose we observe a single outcome, y; = 1, how likely was
this outcome?
» The probability of observing y; =1is 7
» Similarly, if we observe a second outcome, y» = 0, the
probability of seeing this outcome is 1 — 7
» The likelihood function describes the joint probability of all of
the observed data

» |f the data-points are independent, it can be expressed as a
product of individual likelihoods:

P(y) = P(y1) x P(y2) * ... * P(yn)



Likelihood

We're now ready to define the likelihood function:
L(ylm) = P(y1) = P(y2) * ... * P(yn)

n
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Likelihood

We're now ready to define the likelihood function:
L(ylm) = P(y1) = P(y2) * ... * P(yn)

n
— H (1 — ﬂ-)l_)/i
i=1

Logarithms are one-to-one, monotone transformations, so there's no
difference in maximizing the likelihood or the log-likelihood:

I(y|m)) = log(L(y|r))

=3 log(wi(1 — 7))
i=1

:Iog(w)zn:y;—i-/og(l—ﬂ) (1-y)
i=1 i=1 X



Maximizing the Likelihood

» The goal of maximum likelihood estimation is to find a value of
the parameter 7 that maximizes /(y|7))
» Not surprisingly, this can be down by differentiating with
respect to 7, setting the resulting expression equal to zero, then
solving for the maximizer



Maximizing the Likelihood

» The goal of maximum likelihood estimation is to find a value of
the parameter 7 that maximizes /(y|7))
» Not surprisingly, this can be down by differentiating with
respect to 7, setting the resulting expression equal to zero, then
solving for the maximizer

n

I(y|r)) = log(r) S yi + log(1 —m) 3 (1 - yi)

i=1 i=1
ﬂ _ 27:1 Yi sum?_ (1 — y;) set
om ™ 1—m




Maximizing the Likelihood

> It's easy to use algebra to solve for a closed form expression of
7, the value of 7 that maximizes the likelihood of the observed
data
» |'ll skip this, but the result should be unsurprising, the sample
proportion Y7, y;/n is maximizer
> Instead, let's look at a graph of the likelihood



Maximizing the Likelihood

## Sample data
y <= ¢(1,1,1,0,0,1,0)

## Define log-likelihood function
log_lik <- function(pi, y){
log(pi)*sum(y) + log(1 - pi)*sum(1 - y)

## Plot the log-likelthood over all possible walues of pi

pi_seq <- seq(0,1, by = 0.05)

plot(pi_seq, log_lik(pi = pi_seq, y = y), type = "1", ylab = "log-1lik", xlab = "pi")
abline(v = sum(y)/length(y), lty = 2) ## sample proportion
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Comparing Different Models

» The likelihood of the observed data is maximized when

n
™= 1yi/n
» Notice many other values of 7 near the sample proportion will

also fit the data almost as well
» These might be considered reasonable models for the observed

phenomenon



Comparing Different Models

» The likelihood of the observed data is maximized when
T= i 1yi/n

» Notice many other values of 7 near the sample proportion will

also fit the data almost as well
» These might be considered reasonable models for the observed

phenomenon
» In contrast, values closer to zero have a substantially lower

likelihood, and therefore represent models that do not fit the

sample data very well



» The specific numeric value of the log-likelihood doesn’'t much
in an absolute sense, but it means a lot in a relative one
» So long as the data and the underlying probability distribution
remain the same, the log-likelihood can be used to compare the
relative fit of different proposed model to the sample data



» The specific numeric value of the log-likelihood doesn’'t much
in an absolute sense, but it means a lot in a relative one
» So long as the data and the underlying probability distribution
remain the same, the log-likelihood can be used to compare the
relative fit of different proposed model to the sample data
» Logistic regression involves an added layer of complexity
beyond the example we looked at, as logit(w) = o + [1.X1 ...
» We'd now need to solve for a combination of parameter values
that maximize the likelihood
» There's no closed-form solution to this problem, but it's pretty
easy for optimization algorithms to find it using numerical
approaches



Connection to AIC/BIC

» Hopefully this brief example provides some perspective on the
log-likelihood component of the AIC and BIC model selection
criteria

» The main takeaway is that a model's log-likelihood is a relative
measure describing how well it fits the sample data

» Model selection criteria, such as AIC or BIC, aim to balance fit
with parsimony

» They are suitable for comparing non-nested models with
different levels of complexity
» They also can form the basis of stepwise selection algorithms



