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Introduction

I Albert Einstein is often attributed to the quote “Everything
should be made as simple as possible, but no simpler”
I In the context of modeling, this means we should strive for the

simplest possible model that accurately predicts the outcome
variable

I This creates a tension between larger, more complex models
that offer more accurate predictions, and smaller, simpler
models that less prone to over-fitting and are easier to interpret
I Statisticians will frequently use model selection criteria to

objectively measure the overall quality of a model
I A good model selection criterion will punish models that are too

simple to provide accurate predictions and also punish models
that are overly complex
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The Coefficient of Determination (R2)

I A useful starting point is Coefficient of Determination, or R2

R2 = SSyy − SSE
SSyy

I Here, SSyy is the residual sum of squares of the intercept-only
model (ie: the total amount of variability in the outcome)

I SSE is the residual sum of squares for the model of interest (ie:
the variability in the outcome after considering explanatory
variables)
I Thus, R2 describes the fraction of variability in the outcome

variable that can be explained by the model of interest
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A Sequence of Models

Let’s now consider a sequence of six increasingly complex models
(involving the Ames Housing data):

1. SalePrice ~ Gr.Liv.Area
2. SalePrice ~ Gr.Liv.Area + Year.Built
3. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area
4. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area +

Total.Bsmt.SF
5. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area +

Total.Bsmt.SF + Bedroom.AbvGr
6. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area +

Total.Bsmt.SF + Bedroom.AbvGr + RandomValues

In model #6, the final predictor is a vector of randomly generated
numeric values with no relationship to the rest of the data



5/14

A Sequence of Models

R2 can only go up as model complexity increases:
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This means that R2 is not a suitable model selection criterion, as it
will always favor larger models over smaller ones
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Adjusted R2

I In order to make R2 a suitable model selection criterion, it
must be modified to punish larger models

I A commonly used modified version of R2 is Adjusted R2:

R2
a = 1 − (1 − R2) n−1

n−p−1

I Adjusted R2 will always be less than or equal to R2; however,
it does not always increase with the additional of new
predictors, and it can be negative
I Unfortunately, R2

a no longer represents the proportion of
variance in the outcome that is explained by the model of
interest
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A Sequence of Models (revisited)

In the opinion of many statisticians, R2
a doesn’t do enough to

effectively penalize models that contain useless predictors:

Model #1 Model #2 Model #3 Model #4 Model #5 Model #6
R2 0.529 0.653 0.662 0.710 0.733 0.733
Adjusted R2 0.529 0.653 0.662 0.709 0.732 0.732

Notice how R2
a is identical for Model #5 and Model #6!
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The Akaike Information Criterion

Among statisticians, the Akaike Information Criterion, or AIC, is
arguably the most popular model selection criterion:

AIC = −Log-Likelihood + 2k

I Without getting too far into the statistical theory, the
Log-Likelihood of a model is an indication of how well it fits
the data
I A larger likelihood indicates a better fit

I k is the number of parameters included in the model
I Thus, the smaller the AIC of a model is, the better the balance

between accuracy and parsimony
I If two models have roughly equal AIC values, we should favor

the simpler model
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AIC

A difference in AIC of 2 is generally considered meaningful, whereas
I’m not aware of any similar guidelines for R2

a (most seem to just
look for the highest value):

Model #1 Model #2 Model #3 Model #4 Model #5 Model #6
R2 0.529 0.653 0.662 0.710 0.733 0.733
Adjusted R2 0.529 0.653 0.662 0.709 0.732 0.732
AIC 58283.294 57564.707 57505.431 57122.974 56931.497 56933.292

Notice how AIC clearly favors Model #5, while Adjusted R2 fails to
identify the useless predictor in Model #6
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The Bayesian Information Criterion

Perhaps the second most popular model selection criterion is the
Bayesian Information Criterion, or BIC (sometimes called the
Schwarz information criterion, or SBC/SBIC):

BIC = −Log-Likelihood + log(n) ∗ k

I The resemblance to AIC should be apparent (though the two
criterion were derived under completely different paradigms)

I In general, AIC tends to put more weight on a model’s
predictive ability, while BIC tends to put more weight on a
model’s parsimony (at least for sample sizes of n ≥ 8)
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Selection Algorithms

Forward Selection:

I Start with an intercept only model
I Then add the variable that is “most important” (according to a

selection criterion or an F -test)
I Keep doing this until there aren’t any predictors to add that

yield a meaningful improvement

Backward Elimination

I Start with a model that includes all available predictors
I Eliminate the variable that is “least important” (according to a

selection criterion or an F -test)
I Keep doing this until any further eliminations result in too

much of a drop in accuracy

A stepwise algorithm allows an elimination or addition at each step
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Best Subsets

I Selection algorithms tend to be used when the number of
available predictors is large

I If there are only a handful predictor variables, we could just
exhaustively compare all of the possible models
I This logic underlies an approach known as best subsets, which

uses an exhaustive search to find the best model of each size (ie:
from k = 1 to k = p)
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Best Subsets

Below is the output of the plot() function for models of the
variable “Tip” in the Tips dataset:
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Adjusted R2 favors the model using “TotBill” and “Size” as
predictors, while BIC favors the model that only uses “TotBill”
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Closing Remarks

I This presentation introduced several objective methods for
comparing different models
I We’ve already covered a method that’s even more general than

these (albeit more computationally expensive) - cross-validation
I Generally speaking, most statisticians will use model selection

criteria to compare and contrast models of the same family (ie:
comparing multiple regression models with different sets of
predictors)
I Cross-validation tends to be more widely used in comparing

models of different families (ie: multiple regression vs K-nearest
neighbors)


