Multiple Linear Regression - Model Selection Criteria

Ryan Miller

Introduction

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
- In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable

Introduction

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
- In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable
- This creates a tension between larger, more complex models that offer more accurate predictions, and smaller, simpler models that less prone to over-fitting and are easier to interpret

Introduction

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
- In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable
- This creates a tension between larger, more complex models that offer more accurate predictions, and smaller, simpler models that less prone to over-fitting and are easier to interpret
- Statisticians will frequently use model selection criteria to objectively measure the overall quality of a model
- A good model selection criterion will punish models that are too simple to provide accurate predictions and also punish models that are overly complex

The Coefficient of Determination (R^{2})

- A useful starting point is Coefficient of Determination, or R^{2}

$$
R^{2}=\frac{S S_{y y}-S S E}{S S_{y y}}
$$

- Here, $S S_{y y}$ is the residual sum of squares of the intercept-only model (ie: the total amount of variability in the outcome)
- $S S E$ is the residual sum of squares for the model of interest (ie: the variability in the outcome after considering explanatory variables)
- Thus, R^{2} describes the fraction of variability in the outcome variable that can be explained by the model of interest

A Sequence of Models

Let's now consider a sequence of six increasingly complex models (involving the Ames Housing data):

1. SalePrice ~ Gr.Liv.Area
2. SalePrice ~ Gr.Liv.Area + Year.Built
3. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area
4. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF
5. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF + Bedroom.AbvGr
6. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF + Bedroom.AbvGr + RandomValues

In model \#6, the final predictor is a vector of randomly generated numeric values with no relationship to the rest of the data

A Sequence of Models

R^{2} can only go up as model complexity increases:

This means that R^{2} is not a suitable model selection criterion, as it will always favor larger models over smaller ones

Adjusted R^{2}

- In order to make R^{2} a suitable model selection criterion, it must be modified to punish larger models
- A commonly used modified version of R^{2} is Adjusted R^{2} :

$$
R_{a}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-p-1}
$$

Adjusted R^{2}

- In order to make R^{2} a suitable model selection criterion, it must be modified to punish larger models
- A commonly used modified version of R^{2} is Adjusted R^{2} :

$$
R_{a}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-p-1}
$$

- Adjusted R^{2} will always be less than or equal to R^{2}; however, it does not always increase with the additional of new predictors, and it can be negative
- Unfortunately, R_{a}^{2} no longer represents the proportion of variance in the outcome that is explained by the model of interest

A Sequence of Models (revisited)

In the opinion of many statisticians, R_{a}^{2} doesn't do enough to effectively penalize models that contain useless predictors:

	Model \#1	Model \#2	Model \#3	Model \#4	Model \#5	Model \#6
R2	0.529	0.653	0.662	0.710	0.733	0.733
Adjusted R2	0.529	0.653	0.662	0.709	0.732	0.732

Notice how R_{a}^{2} is identical for Model \#5 and Model \#6!

The Akaike Information Criterion

Among statisticians, the Akaike Information Criterion, or AIC, is arguably the most popular model selection criterion:

$$
A I C=- \text { Log-Likelihood }+2 k
$$

- Without getting too far into the statistical theory, the Log-Likelihood of a model is an indication of how well it fits the data
- A larger likelihood indicates a better fit

The Akaike Information Criterion

Among statisticians, the Akaike Information Criterion, or AIC, is arguably the most popular model selection criterion:

$$
A I C=- \text { Log-Likelihood }+2 k
$$

- Without getting too far into the statistical theory, the Log-Likelihood of a model is an indication of how well it fits the data
- A larger likelihood indicates a better fit
- k is the number of parameters included in the model
- Thus, the smaller the AIC of a model is, the better the balance between accuracy and parsimony
- If two models have roughly equal AIC values, we should favor the simpler model

AIC

A difference in AIC of 2 is generally considered meaningful, whereas I'm not aware of any similar guidelines for R_{a}^{2} (most seem to just look for the highest value):

	Model \#1	Model \#2	Model \#3	Model \#4	Model \#5	Model \#6
R2	0.529	0.653	0.662	0.710	0.733	0.733
Adjusted R2	0.529	0.653	0.662	0.709	0.732	0.732
AIC	58283.294	57564.707	57505.431	57122.974	56931.497	56933.292

Notice how AIC clearly favors Model \#5, while Adjusted R^{2} fails to identify the useless predictor in Model \#6

The Bayesian Information Criterion

Perhaps the second most popular model selection criterion is the Bayesian Information Criterion, or BIC (sometimes called the Schwarz information criterion, or SBC/SBIC):

$$
B I C=- \text { Log-Likelihood }+\log (n) * k
$$

- The resemblance to AIC should be apparent (though the two criterion were derived under completely different paradigms)
- In general, AIC tends to put more weight on a model's predictive ability, while BIC tends to put more weight on a model's parsimony (at least for sample sizes of $n \geq 8$)

Selection Algorithms

Forward Selection:

- Start with an intercept only model
- Then add the variable that is "most important" (according to a selection criterion or an F-test)
- Keep doing this until there aren't any predictors to add that yield a meaningful improvement

Selection Algorithms

Forward Selection:

- Start with an intercept only model
- Then add the variable that is "most important" (according to a selection criterion or an F-test)
- Keep doing this until there aren't any predictors to add that yield a meaningful improvement

Backward Elimination

- Start with a model that includes all available predictors
- Eliminate the variable that is "least important" (according to a selection criterion or an F-test)
- Keep doing this until any further eliminations result in too much of a drop in accuracy

A stepwise algorithm allows an elimination or addition at each step

Best Subsets

- Selection algorithms tend to be used when the number of available predictors is large
- If there are only a handful predictor variables, we could just exhaustively compare all of the possible models
- This logic underlies an approach known as best subsets, which uses an exhaustive search to find the best model of each size (ie: from $k=1$ to $k=p$)

Best Subsets

Below is the output of the plot() function for models of the variable "Tip" in the Tips dataset:

Adjusted R^{2} favors the model using "TotBill" and "Size" as predictors, while BIC favors the model that only uses "TotBill"

Closing Remarks

- This presentation introduced several objective methods for comparing different models
- We've already covered a method that's even more general than these (albeit more computationally expensive) - cross-validation
- Generally speaking, most statisticians will use model selection criteria to compare and contrast models of the same family (ie: comparing multiple regression models with different sets of predictors)
- Cross-validation tends to be more widely used in comparing models of different families (ie: multiple regression vs K-nearest neighbors)

