Multiple Linear Regression - Model Selection Criteria

Ryan Miller

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
 - In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
 - In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable
- This creates a tension between larger, more complex models that offer more accurate predictions, and smaller, simpler models that less prone to over-fitting and are easier to interpret

- Albert Einstein is often attributed to the quote "Everything should be made as simple as possible, but no simpler"
 - In the context of modeling, this means we should strive for the simplest possible model that accurately predicts the outcome variable
- This creates a tension between larger, more complex models that offer more accurate predictions, and smaller, simpler models that less prone to over-fitting and are easier to interpret
 - Statisticians will frequently use model selection criteria to objectively measure the overall quality of a model
 - A good model selection criterion will punish models that are too simple to provide accurate predictions and also punish models that are overly complex

• A useful starting point is Coefficient of Determination, or R^2

$$R^2 = \frac{SS_{yy} - SSE}{SS_{yy}}$$

- Here, SS_{yy} is the residual sum of squares of the intercept-only model (ie: the total amount of variability in the outcome)
- SSE is the residual sum of squares for the model of interest (ie: the variability in the outcome after considering explanatory variables)
 - Thus, R² describes the fraction of variability in the outcome variable that can be explained by the model of interest

Let's now consider a sequence of six increasingly complex models (involving the Ames Housing data):

- 1. SalePrice ~ Gr.Liv.Area
- 2. SalePrice ~ Gr.Liv.Area + Year.Built
- 3. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area
- 4. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF
- 5. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF + Bedroom.AbvGr
- 6. SalePrice ~ Gr.Liv.Area + Year.Built + Lot.Area + Total.Bsmt.SF + Bedroom.AbvGr + RandomValues

In model #6, the final predictor is a vector of randomly generated numeric values with no relationship to the rest of the data

A Sequence of Models

 R^2 can only go up as model complexity increases:

This means that R^2 is not a suitable model selection criterion, as it will *always* favor larger models over smaller ones

- In order to make R² a suitable model selection criterion, it must be modified to punish larger models
- A commonly used modified version of R^2 is Adjusted R^2 :

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

- In order to make R² a suitable model selection criterion, it must be modified to punish larger models
- A commonly used modified version of R^2 is Adjusted R^2 :

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

- Adjusted R² will always be less than or equal to R²; however, it does not always increase with the additional of new predictors, and it can be negative
 - Unfortunately, R²_a no longer represents the proportion of variance in the outcome that is explained by the model of interest

In the opinion of many statisticians, R_a^2 doesn't do enough to effectively penalize models that contain useless predictors:

	Model #1	Model #2	Model #3	Model #4	Model #5	Model #6
R2	0.529	0.653	0.662	0.710	0.733	0.733
Adjusted R2	0.529	0.653	0.662	0.709	0.732	0.732

Notice how R_a^2 is identical for Model #5 and Model #6!

Among statisticians, the Akaike Information Criterion, or AIC, is arguably the most popular model selection criterion:

$$AIC = -Log-Likelihood + 2k$$

- Without getting too far into the statistical theory, the Log-Likelihood of a model is an indication of how well it fits the data
 - A larger likelihood indicates a better fit

Among statisticians, the Akaike Information Criterion, or AIC, is arguably the most popular model selection criterion:

$$AIC = -Log-Likelihood + 2k$$

Without getting too far into the statistical theory, the Log-Likelihood of a model is an indication of how well it fits the data

A larger likelihood indicates a better fit

- ▶ *k* is the number of parameters included in the model
 - Thus, the smaller the AIC of a model is, the better the balance between accuracy and parsimony
 - If two models have roughly equal AIC values, we should favor the simpler model

A difference in AIC of 2 is generally considered meaningful, whereas I'm not aware of any similar guidelines for R_a^2 (most seem to just look for the highest value):

	Model #1	Model #2	Model #3	Model #4	Model #5	Model #6
R2	0.529	0.653	0.662	0.710	0.733	0.733
Adjusted R2	0.529	0.653	0.662	0.709	0.732	0.732
AIC	58283.294	57564.707	57505.431	57122.974	56931.497	56933.292

Notice how AIC clearly favors Model #5, while Adjusted R^2 fails to identify the useless predictor in Model #6

Perhaps the second most popular model selection criterion is the Bayesian Information Criterion, or BIC (sometimes called the Schwarz information criterion, or SBC/SBIC):

$$BIC = -\text{Log-Likelihood} + \log(n) * k$$

- The resemblance to AIC should be apparent (though the two criterion were derived under completely different paradigms)
- In general, AIC tends to put more weight on a model's predictive ability, while BIC tends to put more weight on a model's parsimony (at least for sample sizes of n ≥ 8)

Forward Selection:

- Start with an intercept only model
 - Then add the variable that is "most important" (according to a selection criterion or an F-test)
 - Keep doing this until there aren't any predictors to add that yield a meaningful improvement

Forward Selection:

- Start with an intercept only model
 - Then add the variable that is "most important" (according to a selection criterion or an F-test)
 - Keep doing this until there aren't any predictors to add that yield a meaningful improvement

Backward Elimination

- Start with a model that includes all available predictors
 - Eliminate the variable that is "least important" (according to a selection criterion or an *F*-test)
 - Keep doing this until any further eliminations result in too much of a drop in accuracy

A stepwise algorithm allows an elimination or addition at each step

- Selection algorithms tend to be used when the number of available predictors is large
- If there are only a handful predictor variables, we could just exhaustively compare all of the possible models
 - This logic underlies an approach known as *best subsets*, which uses an exhaustive search to find the best model of each size (ie: from k = 1 to k = p)

Below is the output of the plot() function for models of the variable "Tip" in the Tips dataset:

Adjusted R^2 favors the model using "TotBill" and "Size" as predictors, while BIC favors the model that only uses "TotBill"

X 13/14 This presentation introduced several objective methods for comparing different models

- We've already covered a method that's even more general than these (albeit more computationally expensive) - cross-validation
- Generally speaking, most statisticians will use model selection criteria to compare and contrast models of the same *family* (ie: comparing multiple regression models with different sets of predictors)
 - Cross-validation tends to be more widely used in comparing models of *different families* (ie: multiple regression vs K-nearest neighbors)

