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Multiple Linear Regression - Quantitative
Predictors
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Introduction

Previously, we introduced multiple linear regression, which allows us
to model an outcome variable using multiple predictors:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε

I When the predictor xj is a dummy variable, we can view βj as
a modification of the model’s intercept

I When the predictor xj is a numeric variable, βj is the model’s
slope in the jth dimension
I This is easiest to visualize when the model contains two

numeric predictors, as the corresponding slopes will form a
regression plane
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Regression Planes

For the Ames housing data, the estimated regression plane below
displays the model:

SalePrice ~ Gr.Liv.Area + TotRms.AbvGrd
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Regression Planes

The summary function will provide us the estimated slope in each
dimension
##
## Call:
## lm(formula = SalePrice ~ Gr.Liv.Area + TotRms.AbvGrd, data = ah)
##
## Residuals:
## Min 1Q Median 3Q Max
## -572457 -28568 -2882 20536 348406
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38534.235 4973.439 7.748 1.38e-14 ***
## Gr.Liv.Area 146.511 3.922 37.356 < 2e-16 ***
## TotRms.AbvGrd -11057.878 1273.236 -8.685 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56630 on 2351 degrees of freedom
## Multiple R-squared: 0.5436, Adjusted R-squared: 0.5432
## F-statistic: 1400 on 2 and 2351 DF, p-value: < 2.2e-16
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Adjusted vs. Unadjusted Effects

I Notice the negative slope in the “TotRms.AbvGrd” dimension,
does this mean that having more rooms is expected to decrease
a home’s sale price?

I No, it’s essential to recognize that this slope is an adjusted
effect

I According to our model, having more rooms decreases a
home’s sale price if the square footage remains unchanged
I This should make sense, since adjustment would imply the

home has smaller rooms
I For reference, the slope in the simple linear regression model

SalePrice ~ TotRms.AbvGrd is positive 27,683
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Adjusted vs. Unadjusted Effects

We can further understand the adjusted vs. unadjusted effect of
“TotRms.AbvGrd” using a scatterplot matrix:
plot(ah[,c("SalePrice", "Gr.Liv.Area", "TotRms.AbvGrd")])
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I Multiple regression provides a method for isolating the effect of
each variable
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Connection to Stratification

I We’ve previously discussed using stratification to deal with
confounding variables
I Both stratification and multiple regression work by holding the

confounding variable constant in order to isolate the impact of
the explanatory variable of interest

I Additionally, stratification is sort of like a cross-section of the
regression plane
I Within a given cross-section, the confounding variable is held at

a fixed value
I Unless the model includes an interaction, we don’t even need to

worry about which cross-section - the slope of the primary
explanatory variable will be same
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Adding More Predictors

I As we’ve seen, two numeric predictors will result in a regression
plane
I Adding a categorical predictor will shift the y -intercept of this

plane, leading to parallel planes for each of the variable’s
category

I Adding another numeric predictor is not something we can
visualize, but the overall concepts are the same
I Least squares will estimate a separate slope in each dimension

that isolates the impact of that variable
I In any case, when interpreting an estimated coefficient it is

essential to recognize its effect has been adjusted for all other
variables in the model
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Closing Remarks

I We’ve now discussed multiple regression, at a conceptual level,
for categorical and numeric variables
I Our focus has been on understanding adjusted effects

I Next week we’ll look more closely at choosing variables that are
worth including in a model, as well as some additional details
regarding how certain data-points can influence the overall
model


