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Logistic Regression - Introduction

Ryan Miller
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Modeling Binary Outcomes

I At this point in the semester, we’ve spent several weeks
modeling numerical outcomes
I Unfortunately, these models aren’t suitable for categorical

outcomes
I This week, we’ll introduce logistic regression, which is

perhaps the most widely used model for binary categorical
outcomes
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Introduction

I Consider the XU basketball team dataset, we might be
interested in the outcomes “win” and “loss”
I If we create a dummy variable that encodes a numeric value of

“1” to a “win” and “0” to a “loss”, we interpret E (y) as the
probability of a win

I The graph below shows the simple linear regression model: Win
~ OppPts
I What problem does this model exhibit?
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Generalized Linear Models

Logistic regression, and linear regression, are both types of
generalized linear models (GLMs for short):

g
(
E (y)

)
= β0 + β1x1 + β2x2 + . . .

All GLMs have the following components:

I Systematic component - a linear combination of predictor
variables (ie: β0 + β1x1 + β2x2 + . . .)

I Random component - a probability distribution for Y , the
outcome variable

I Link function - a function that links E (Y ) to the model’s
systematic component
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Link Functions

I In linear regression, the link function is simply the identity
function (ie: g

(
E (y)

)
= E (y))

I This link makes interpretations very straightforward, as
predictors influence the outcome directly

I For binary outcomes, it would be unwise to use an identity link
function
I In these situations, E (y) can been seen as a probability
I Thus, any model should be careful to avoid generating

predictions for E (y) that are outside [0, 1]
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Odds

I An alternative way of expressing the likelihood of an event is
the odds of the event
I The odds of an event is a ratio of how often the event occurs

relative to how often it does not occur
I If an event has a 50% probability, the odds are 1, which are

often called “1 to 1 odds”
I If an event has a 75% probability, the odds are 3, which are

often called “3 to 1 odds”
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Odds

I The odds of an event can range from 0 (ie: 0/1) to +∞ (ie:
1/0)
I This makes odds a more desirable modeling outcome than

probability
I The chances of a linear combination of predictors resulting in a

value outside [0,∞] is lower than getting a prediction outside of
[0, 1]

I Further, the log-odds, or logit, of an outcome (ie: ln( E(y)
1−E(y))

can take-on values ranging from −∞ to +∞
I Logistic regression uses a logit link function
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The Logistic Regression Model

Logistic regression uses the logit link function, the binomial
probability distribution, and a linear combination of predictors:

log
( E(y)

1−E(y)
)

= β0 + β1X1 + . . .+ βpXp
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Interpretting Model Coefficients

I In logistic regression, each predictor makes a linear contribution
towards the log-odds of an event
I Thus, each additional point scored by Xavier’s opponent is

expected to decrease the log-odds of winning by 0.077
I Unfortunately, the log-odds scale is not very easily interpreted

ml <- glm(win ~ Opp.1, data = xub, family = "binomial")
ml$coefficients

## (Intercept) Opp.1
## 6.38825140 -0.07667347
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Interpretting Model Coefficients

Fortunately, we can use mathematics to make sense of things:

log
( E(y)

1−E(y)
)

= β0 + β1X1 + . . .+ βpXp

=⇒ E(y)
1−E(y) = exp(β0 + β1X1 + . . .+ βpXp)

=⇒ E(y)
1−E(y) = exp(β0) ∗ exp(β1X1) ∗ . . . ∗ exp(βpXp)

I The exponent of the intercept represents the baseline odds
I The exponent of β1, . . . , βp is a multiplier of the baseline odds
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Interpretting Model Coefficients

I In our XU basketball example, exp(6.39) = 595.9 and
exp(−0.077) = 0.92
I The baseline odds reflect the likelihood of XU winning if the

opponent doesn’t score (somewhat meaningless)
I Then, we estimate an 8% decrease in the odds of XU winning

for each point scored by the opponent
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Odds Ratios

I For binary predictors, exp(β) yields an odds ratio
ml <- glm(win ~ Location, data = xub, family = "binomial")
exp(ml$coefficients)

## (Intercept) LocationH
## 0.5 11.0

I The odds XU winning at home are 11 times the odds of XU
winning on the road
I We can verify this with a contingency table, odds at home =

11/2, odds on the road = 2/4, odds ratio = ( 11/2
2/4 = 11)

##
## Loss Win
## A 4 2
## H 2 11
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Closing Remarks

I Logistic regression is a popular modeling approach because it
yields sensible, interpretable models that can be used for
statistical inference on binary outcomes

I Unfortunately, at least in some aspects, is that logistic
regression focuses on odds rather than probabilities
I Odds reflect the likelihood of how often an outcome occurs

relative to how often it does not occur
I The estimated coefficients in Logistic regression, after

transformation, can be used to assess the adjusted effect of a
predictor on the odds of an outcome


