Logistic Regression - Introduction
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Modeling Binary Outcomes

P At this point in the semester, we've spent several weeks
modeling numerical outcomes

» Unfortunately, these models aren’t suitable for categorical
outcomes

» This week, we'll introduce logistic regression, which is
perhaps the most widely used model for binary categorical
outcomes



Introduction

» Consider the XU basketball team dataset, we might be
interested in the outcomes “win" and “loss”
» |If we create a dummy variable that encodes a numeric value of
“1" to a “win” and "“0" to a "loss”, we interpret E(y) as the
probability of a win



Introduction

» Consider the XU basketball team dataset, we might be
interested in the outcomes “win” and “loss”
» |If we create a dummy variable that encodes a numeric value of
“1" to a “win” and "“0" to a "loss”, we interpret E(y) as the
probability of a win
» The graph below shows the simple linear regression model: Win
~ OppPts
» What problem does this model exhibit?
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Generalized Linear Models

Logistic regression, and linear regression, are both types of
generalized linear models (GLMs for short):

g(E(y)) = Bo+ Bix1+ Poxo+ ...

All GLMs have the following components:

» Systematic component - a linear combination of predictor
variables (ie: 8o + fix1 + fBaxo + .. .)
» Random component - a probability distribution for Y, the

outcome variable
» Link function - a function that links E(Y) to the model’s
systematic component



» In linear regression, the link function is simply the identity
function (ie: g(E(y)) = E(y))
» This link makes interpretations very straightforward, as
predictors influence the outcome directly



» In linear regression, the link function is simply the identity
function (ie: g(E(y)) = E(y))
» This link makes interpretations very straightforward, as
predictors influence the outcome directly
» For binary outcomes, it would be unwise to use an identity link
function
> In these situations, E(y) can been seen as a probability
» Thus, any model should be careful to avoid generating
predictions for E(y) that are outside [0, 1]



P> An alternative way of expressing the likelihood of an event is

the odds of the event
» The odds of an event is a ratio of how often the event occurs
relative to how often it does not occur

» If an event has a 50% probability, the odds are 1, which are
often called “1 to 1 odds”

» If an event has a 75% probability, the odds are 3, which are
often called “3 to 1 odds”



» The odds of an event can range from 0 (ie: 0/1) to +oo (ie:
1/0)
» This makes odds a more desirable modeling outcome than
probability
» The chances of a linear combination of predictors resulting in a
value outside [0, o] is lower than getting a prediction outside of

[0,1]



» The odds of an event can range from 0 (ie: 0/1) to +oo (ie:
1/0)
» This makes odds a more desirable modeling outcome than
probability
» The chances of a linear combination of predictors resulting in a
value outside [0, o] is lower than getting a prediction outside of
[0,1]
» Further, the log-odds, or logit, of an outcome (ie: In(l_E‘(E}?y))
can take-on values ranging from —oo to 400
> Logistic regression uses a logit link function




The Logistic Regression Model

Logistic regression uses the /logit link function, the binomial
probability distribution, and a linear combination of predictors:

/Og(lféy(i,)) =fBo+ b1 Xi+ ...+ /Bpo
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Interpretting Model Coefficients

» In logistic regression, each predictor makes a linear contribution
towards the log-odds of an event
» Thus, each additional point scored by Xavier's opponent is
expected to decrease the log-odds of winning by 0.077

» Unfortunately, the log-odds scale is not very easily interpreted

ml <- glm(win ~ Opp.1, data = xub, family = "binomial")
ml$coefficients

## (Intercept) Opp.1
## 6.38825140 -0.07667347



Interpretting Model Coefficients

Fortunately, we can use mathematics to make sense of things:

/Og( (y) ) 50 —+ 5]_X]_ +...+ BPXP
L e st

— (B0 — exp(fo) * exp(B1X1) ... ¥ exp(BXo)

> The exponent of the intercept represents the baseline odds
» The exponent of f31,...,p is a multiplier of the baseline odds



Interpretting Model Coefficients

» In our XU basketball example, exp(6.39) = 595.9 and
exp(—0.077) = 0.92
» The baseline odds reflect the likelihood of XU winning if the
opponent doesn't score (somewhat meaningless)
» Then, we estimate an 8% decrease in the odds of XU winning
for each point scored by the opponent



Odds Ratios

» For binary predictors, exp(f) yields an odds ratio

ml <- glm(win ~ Location, data = xub, family = "binomial")
exp(ml$coefficients)

## (Intercept) LocationH
## 0.5 11.0

» The odds XU winning at home are 11 times the odds of XU
winning on the road
» We can verify this with a contingency table, odds at home =

11/2, odds on the road = 2/4, odds ratio = (% =11)

##

## Loss Win
## A 4 2
#i#t H 2 11



Closing Remarks

P Logistic regression is a popular modeling approach because it
yields sensible, interpretable models that can be used for
statistical inference on binary outcomes

> Unfortunately, at least in some aspects, is that logistic
regression focuses on odds rather than probabilities

» Odds reflect the likelihood of how often an outcome occurs
relative to how often it does not occur

» The estimated coefficients in Logistic regression, after
transformation, can be used to assess the adjusted effect of a
predictor on the odds of an outcome



