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Introduction

I We’ve spent the majority of the semester studying generalized
linear models (linear and logistic regression in particular)
I The roles of individual predictors are clearly understood
I The models can be used for statistical inference

I However, these models can be poorly suited for applications
with a high degrees of interaction between predictors, or
complex non-linear relationships
I This week, we’ll explore some non-parametric alternatives to

GLMs
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Well Switching

At the end of Lab #9 was an application involving households in
Bangladesh switching from high arsenic wells to safer ones:
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Well Switching - Logistic Regression

Looking at a summary of the logistic regression model: switch ~
distance + arsenic, how do these predictors influence the
likelihood of switching?
##
## Call:
## glm(formula = switch ~ distance + arsenic, family = "binomial",
## data = Wells)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6351 -1.2139 0.7786 1.0702 1.7085
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.002749 0.079448 0.035 0.972
## distance -0.008966 0.001043 -8.593 <2e-16 ***
## arsenic 0.460775 0.041385 11.134 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 4118.1 on 3019 degrees of freedom
## Residual deviance: 3930.7 on 3017 degrees of freedom
## AIC: 3936.7
##
## Number of Fisher Scoring iterations: 4
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Well Switching - Logistic Regression (Visualization)

library(visreg)
m <- glm(switch ~ distance + arsenic, data = Wells, family = "binomial")
visreg2d(m, xvar = "distance", yvar = "arsenic", scale = "response")
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Well Switching - Interactions
However, perhaps there’s an interaction between these two
variables? How might we decide if this interaction is real?

m <- glm(switch ~ distance*arsenic, data = Wells, family = "binomial")
visreg2d(m, xvar = "distance", yvar = "arsenic", scale = "response")
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Well Switching - Interactions

A likelihood ratio test suggests borderline statistical evidence of an
interaction. . .

library(lmtest)
m1 <- glm(switch ~ distance + arsenic, data = Wells, family = "binomial")
m2 <- glm(switch ~ distance*arsenic, data = Wells, family = "binomial")
lrtest(m1, m2)

## Likelihood ratio test
##
## Model 1: switch ~ distance + arsenic
## Model 2: switch ~ distance * arsenic
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 -1965.3
## 2 4 -1963.8 1 3.0399 0.08124 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Alternatives to Logistic Regression

I In some circumstances, it might make sense to change the
modeling approach rather than include numerous interactions
in a logistic regression model
I Logistic regression coefficients can already be difficult to

interpret, and interactions will make interpreting the model even
more complicated

I Classification and Regression Trees (CART) are a type of
non-parametric model that are well-suited for applications
involving many interactive features
I As you’ll soon see, CART models are easily interpreted (even

while including numerous interactions between features)
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The CART Algorithm

The CART algorithm relies on a procedure known as recursive
binary splitting:

1) Starting with a “parent” node, search for a splitting rule that
maximizes the homogeneity or purity of the “child” nodes

2) Next, considering each node that hasn’t yet been split, find
another splitting rule that maximizes purity

3) Repeat until a stopping criteria has been reached
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Example - CART

library(rpart)
library(rpart.plot)
mytree <- rpart(switch ~ distance + arsenic, data = Wells)
rpart.plot(mytree, extra = 104)
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How are Splits Determined?

I The CART algorithm works to split parent nodes into child
nodes that are as homogeneous (or “pure”) as possible

I There are dozens of ways to measure purity, but a couple
popular ones are:
I Gini Index: a criteria based upon the binomial variance,

p ∗ (1 − p) - nodes that are more “pure” have less variance
I Information Gain: A more sophisticated theoretical construct

that compares the divergence of two probability distributions

Additional information:

I More on CART splits: http://pages.stat.wisc.edu/~loh/treeprogs/guide/wires11.pdf
I More on Information Gain: https://en.wikipedia.org/wiki/Information_gain_in_decision_trees

http://pages.stat.wisc.edu/~loh/treeprogs/guide/wires11.pdf
https://en.wikipedia.org/wiki/Information_gain_in_decision_trees


12/20

When does Splitting Stop?

Two factors which determine when the CART algorithm terminates:

1) The complexity parameter, cp, which defines a minimum factor
of improvement in purity that must be achieved in order for a
split to be considered “worthwhile” (1% by default in rpart())

2) The minimum node size, the minimum number of data-points
that must belong to a node for it to be deemed eligible for
splitting (20 by default in rpart())
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Tuning the CART Algorithm
Notice what happens when cp is set to 0.008 (rather than the
default of 0.01). What do you think would happen if it were set to
0.001?
mytree <- rpart(switch ~ distance + arsenic, data = Wells,

control = rpart.control(cp = 0.008, minsplit = 100))
rpart.plot(mytree, extra = 104)
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Comments on Splitting/Tuning

I In the previous example, notice our new tree is merely our first
tree with one additional split
I This is not a coincidence, the CART algorithm is greedy

I An implication is that we can always go from a larger CART
model to a smaller one by ignoring splits that are beneath a
certain depth
I This idea is called “pruning”, it is covered in greater detail in

this week’s lab
I Pruning is unique to CART models, we couldn’t do the same

thing in logistic regression
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Can CART Outperform Logistic Regression?

In our well switching application, how might we determine whether
our CART model is better than a logistic regression model?

I Can we use a statistical test, such as the likelihood ratio test?

I No, the models aren’t nested.
I Can we use a model selection criterion like AIC or BIC?

I No, the CART model doesn’t involve a likelihood.
I Can we compare performance summaries like classification

accuracy, Cohen’s kappa, or AUC?
I Yes, but we should be careful not to reward overfitting the

sample data
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Comparison Using Cross-Validation

### Setup
set.seed(123)
fold_id <- sample(rep(1:5, length.out = nrow(Wells)), size = nrow(Wells))
preds1 <- preds2 <- preds3 <- preds4 <- numeric(nrow(Wells))

## Loop across CV folds
for(k in 1:5){

## Subset the data
train <- Wells[fold_id != k, ]
test <- Wells[fold_id == k, ]

## Fit models on the data
m1 <- glm(switch ~ arsenic*distance, data = train, family = "binomial")
m2 <- glm(switch ~ arsenic + distance, data = train, family = "binomial")
m3 <- rpart(switch ~ distance + arsenic, data = train)
m4 <- rpart(switch ~ distance + arsenic, data = train,

control = rpart.control(cp = 0.008, minsplit = 100))

## Store predictions
preds1[fold_id == k] <- predict(m1, newdata = test, type = "response")
preds2[fold_id == k] <- predict(m2, newdata = test, type = "response")
preds3[fold_id == k] <- predict(m3, newdata = test, type = "prob")[,2]
preds4[fold_id == k] <- predict(m4, newdata = test, type = "prob")[,2]

}
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Comparison Using Cross-Validation (continued)

Sadly, both of our CART models have lower out-of-sample accuracy
than either logistic regression model

## Out-of-sample accuracy
pred_class1 <- ifelse(preds1 >= .5, "yes", "no")
out_acc1 <- sum(pred_class1 == Wells$switch)/nrow(Wells)
pred_class2 <- ifelse(preds2 >= .5, "yes", "no")
out_acc2 <- sum(pred_class2 == Wells$switch)/nrow(Wells)
pred_class3 <- ifelse(preds3 >= .5, "yes", "no")
out_acc3 <- sum(pred_class3 == Wells$switch)/nrow(Wells)
pred_class4 <- ifelse(preds4 >= .5, "yes", "no")
out_acc4 <- sum(pred_class4 == Wells$switch)/nrow(Wells)
c(out_acc1, out_acc2, out_acc3, out_acc4)

## [1] 0.6215232 0.6201987 0.6152318 0.6115894
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In-sample Model Comparison

It’s worthwhile noting our the CART model does have higher
in-sample accuracy than the logistic regression model with an
interaction. . .

## Larger tree
mytree <- rpart(switch ~ distance + arsenic, data = Wells,

control = rpart.control(cp = 0.008, minsplit = 100))
preds_tree <- predict(mytree, newdata = Wells, type = "prob")[,2]
preds_tree_class <- ifelse(preds_tree >= .5, "yes", "no")

## Larger Logistic Regression
lreg <- glm(switch ~ arsenic*distance, data = Wells, family = "binomial")
preds_lreg <- predict(lreg, newdata = Wells, type = "response")
preds_lreg_class <- ifelse(preds_lreg >= .5, "yes", "no")

## In-sample accuracy
c(sum(preds_tree_class == Wells$switch)/nrow(Wells),

sum(preds_lreg_class == Wells$switch)/nrow(Wells))

## [1] 0.6307947 0.6241722
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Pros and Cons of Tree-based Models

Pros:

I Work great on highly interactive data
I Don’t require the user to specify a parametric model (or

perform model selection)
I Easy to visualize and understand
I Easily generalized to nominal or numeric outcomes

Cons:

I Tend to overfit the sample data, leading a greater disparity
between in-sample and out-of-sample performance (we’ll talk
more about this next time)

I Effects of individual predictors aren’t distinct
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Additional Comments

I It isn’t necessary to use CART as a “final model”, the method
used to help discover interactions or non-linear relationships
I So, even if your application suggests using regression, trees are

a useful an exploratory method

I Alternatively, even if logistic regression offers superior
predictive performance, a CART model is sometimes still
preferable due to its simplicity
I It’s much easier to explain a set of splitting rules to most

non-statisticians than it is to explain log-odds or odds ratios
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