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Linear Regression - Predictions

Ryan Miller
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Introduction

I A major strength of linear regression (relative to other types of
models that we’ll discuss next week) is that is a statistical
model
I This allows us to statistically assess our estimate’s of the slope

and intercept using confidence intervals and hypothesis tests
I It also allows us to make predictions that incorporate uncertainty
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Estimation vs. Prediction

I For a given value of x , simple linear regression stipulates
E (y) = β0 + β1x
I Thus, our model provides an estimate of the average y-value

when x = c via β̂0 + β̂1 ∗ c

I Unfortunately, the average by itself doesn’t tell us much about
the variability in possible y -values that might be observed when
when x = c
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Estimation vs. Prediction

I Thinking about our home sales example, we might want to
know what types of sale prices we’d expect for a home with an
assessed value of $200,000
I Our model suggests these homes should have average sale prices

at (or slightly above) $200,000
I But is a sale price of $300,000 something we might expect? Or

what about $150,000?
I Could a confidence interval help us?
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Estimation vs. Prediction

I A confidence interval will express the statistical variability of
the average y-value, but sometimes we’re more interested in
variability of individual y-values
I This can be assessed using a prediction interval
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A Simple Analogy

I Prediction interval: applying the 68-95-99 to the cases in a
population

I Confidence interval: applying the 68-95-99 to the sampling
distribution
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Some Theoretical Details

I Consider the random component of the simple linear regression
model, ε ∼ N(0, σ2)
I The residuals in our fitted model can be seen as realizations of

these random errors

I The residual sum or squares (SSE) summarizes the total
variation in these errors
I Dividing SSE by its degrees of freedom, n − 2, yields an

unbiased estimator of σ2

I The resulting estimate, s2, expresses the total variability (in
individual errors) that exists around the regression line
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Some Theoretical Details

I Based upon the code below, we can estimate σ as s = 157.9
for the RMR dataset
I Thus, the average distance between an observed resting

metabolic rate and our line is around 158 kcal

rmr <- read.csv("https://remiller1450.github.io/data/RMR.csv")
m <- lm(rate_kcal ~ weight_lbs, data = rmr)
s2 <- sum(m$residuals^2)/m$df.residual
s <- sqrt(s2)
s

## [1] 157.9052
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s2 and Prediction Intervals

I Notice the relationship between s = 158 and the 95%
prediction interval
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More Theoretical Details

I You might notice that confidence intervals and prediction
intervals tend to grow wider, or “fan out”, near the edges of
the regression line. This is due to two factors:
I The slope and intercept each have their own statistical

uncertainty
I The fitted regression line must always pass through the point
{x̄ , ȳ}

I Conceptually, if you image a bunch of different samples you’d
expect {x̄ , ȳ} to be fairly similar in each, at least compared to
the variability in other data-points (since the variability of a
sample mean is Std Dev/

√
n)

I We won’t cover the mathematical details, but you can find
them in Ch 3.9 of our textbook (A Second Course in Statistics)
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Extrapolation

In 2004, an article was published in Nature titled “Momentous
sprint at the 2156 Olympics”. The authors plotted the winning
times of the men’s and women’s 100m dash in every Olympics,
fitting separate regression lines to each.

They found that the lines will intersect at the 2156 Olympics, here
are a few media headlines:

I “Women ‘may outsprint men by 2156’ ” - BBC News
I “Data Trends Suggest Women will Outrun Men in 2156” -

Scientific American
I “Women athletes will one day out-sprint men” - The Telegraph
I “Why women could be faster than men within 150 years” - The

Guardian

Do you have any problems with these conclusions?

https://www.nature.com/articles/431525a
https://www.nature.com/articles/431525a
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Extrapolation

Here is the figure from the original publication in Nature:

https://www.nature.com/articles/431525a
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Extrapolation

A few more Olympics have happened since 2004, so new data-points
can be added:

source: https://callingbullshit.org/case_studies/case_study_gender_gap_running.html

https://callingbullshit.org/case_studies/case_study_gender_gap_running.html
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Closing Remarks

I The statistical aspects of linear regression make it a very
attractive model
I As we’ll soon see, this is particularly useful for models with

multiple predictors, as it allows us to make “what-if” predictions
that account for uncertainty using our model


