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Introduction

I Classification and regression trees (CART) provide a sensible,
easily interpreted model for scenarios involving highly
interactive or non-linear sets of explanatory variables
I Unfortunately, CART models tend to have high variance,

making them prone to overfitting

I In the well-switching example, our CART model had an
in-sample accuracy of 63.1% but its cross-validated accuracy
was only 61.2%
I For comparison, logistic regression (with interaction) had

in-sample accuracy of 62.4% and a cross-validated accuracy of
62.2%
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Random Forests and Variance

I Random forests are application of tree-based models centering
upon the idea that the average of a set has lower variance than
the individual observations

I This concept is seen extensively in classical statistics. Suppose
a random variable, X , is normally distributed as follows:
X ∼ N(µ, σ)
I By CLT, we know Var(x̄) = σ2/n, while Var(x1) = σ2
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Random Forests and Variance

I A similar idea applies to predictive models
I If several separate predictive models are averaged, the result will

have lower variance (less propensity towards overfitting) than
any of the individual models

I Random forests exploit this fact by averaging the predictions of
many different CART models to obtain a single, low-variance
prediction
I The challenge in doing this is that the models need to be

independent of each other. . .
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Bootstrapping

I Bootstrapping is a general statistical approach used to mimic
the generation of new data
I The main idea is to randomly sample the original dataset with

replacement to construct a bootstrapped sample
I Often, the process is repeated many times to create a set of B

unique bootstrap samples

set.seed(123)
n <- length(Wells)
B <- numeric(10)

## Bootstrapping the mean arsenic level (10 different bootstrap samples)
for(i in 1:length(B)){

boot_idx <- sample(1:n, size = n, replace = TRUE)
boot_sample <- Wells[boot_idx,]
B[i] <- mean(boot_sample$arsenic)

}
B

## [1] 1.526 1.478 1.750 1.720 1.730 1.226 1.730 1.468 1.032 2.050
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The Random Forest Algorithm

1) Create B bootstrap samples
2) For bootstrap sample, fit a CART model, but do so by

randomly selecting a subset of m predictors to be considered at
each split

3) Each of the B trees in the forest contributes a prediction or
“vote”, with the majority (or average) of these votes forming
the random forest’s final prediction

Note:

I The random selection of m predictors to consider at each split
prevents the same variables from always dominating every tree,
which further decorrelates the predictions (or votes) of the
different trees
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The Random Forest Algorithm

Random forest models can be trained using the randomForest
package in R:

## Random forest (B = 10)
library(randomForest)
rf <- randomForest(switch ~ ., data = Wells, ntree = 10)

## Vote distribution (first for the first 6 data-points)
rf$votes[1:6,]

## no yes
## 1 0.0000000 1.0000000
## 2 0.7500000 0.2500000
## 3 0.0000000 1.0000000
## 4 0.0000000 1.0000000
## 5 0.6666667 0.3333333
## 6 0.0000000 1.0000000
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Evaluating Random Forest Predictions

I Because bootstrapping will naturally omit some data-points
from each bootstrap sample, cross-validation is not necessary
to measure out-of-sample performance
I Instead the “bagged” data-points can be used as test data,

yielding “out of bag”, or OOB, performance measures

## OOB error rates for each of our 10 trees
rf$err.rate

## OOB no yes
## [1,] 0.4354839 0.5170940 0.3765432
## [2,] 0.4334433 0.5361757 0.3572797
## [3,] 0.4365639 0.5051546 0.3853846
## [4,] 0.4368088 0.5032377 0.3873191
## [5,] 0.4351852 0.5051903 0.3827720
## [6,] 0.4307036 0.5033223 0.3763975
## [7,] 0.4369369 0.5056818 0.3857316
## [8,] 0.4419002 0.5172969 0.3862151
## [9,] 0.4431664 0.5226370 0.3842074
## [10,] 0.4273762 0.5102041 0.3658110
mean(rf$err.rate[,1])

## [1] 0.4357569
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Evaluating Random Forest Predictions

With some minor tweaking of the tuning parameters, it’s easy to
find a model with out-of-sample accuracy superior to both logistic
regression and CART

I mtry is the number of variables to randomly consider at each
split

I nodesize is the minimum size of each terminal node

rf <- randomForest(switch ~ ., data = Wells, ntree = 500,
mtry = 2, nodesize = 100)

1 - mean(rf$err.rate[,1])

## [1] 0.6360171
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Random Forest Pros and Cons:

Pros:

I Better accuracy than most models
I Tends to work well even if the data includes outliers,

non-linearity, interactions, and missing data

Cons:

I Significantly harder to interpret compared to individual trees
I Methods have been developed to output the “average tree”
I Methods have been developed to measure the “importance” of

each variable
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Closing Remarks

I Random forests are a very powerful predictive modeling
approach, but that accuracy comes at the expense of
interpretability
I Unlike a single CART model (or even logistic regression), it’s

difficult to communicate how a random forest generates
predictions

I However, random forests will generally yield better
out-of-sample performance than both CART and logistic
regression (given proper choices for tuning parameters such as
mtry and nodesize)


