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Simple Linear Regression
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Introduction

I The purpose of this presentation is to introduce the formal
details of linear regression
I This will focus on the framing, logic, and notation used by

statisticians
I I’m assuming you’re already familiar with basic concept of a

straight-line model
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Population-level Models

I Statisticians choose models that they presume will be useful at
the population level
I This choice might be informed by data exploration, but the goal

typically is to generalize beyond the observed data

I In simple linear regression, a straight-line is determine the
expected value of an outcome variable at a given value of the
explanatory variable

Model Expectation
y = β0 + β1x + ε E (y) = β0 + β1x

I β0 and β1 are assumed to be fixed, but unknown population
parameters
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Errors

I The error component, ε, allows the model to be mathematically
true without needing to pass through every data-point
I These errors are assumed to follow a Normal distribution,

ε ∼ N(0, σ2)

I While x and y are both observed, only y is a random variable
I y ∼ N(β0 + β1x , σ2), by virtue of ε

Model Expectation
y = β0 + β1x + ε E (y) = β0 + β1x
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Least Squares Estimation

I The slope and intercept are estimated from the observed data
by solving for the line that minimizes the residual sum of
squares

RSS =
∑

i
r2
i where ri = yi − E (yi )

I These estimates can be found using calculus (something we’ll
gloss over):

β̂0 = ȳ − β̂1x̄ β̂1 =
∑

i (yi − ȳ)(xi − x̄)∑
i (xi − x̄)
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Maximum Likelihood

I The original motivation behind least squares regression was
that

∑
i r2

i is differentiable, while
∑

i |ri | is not

I It was later discovered that if y is Normally distributed, β̂0 and
β̂1 are also the maximum likelihood estimates of β0 and β1
I We won’t go too far into likelihood theory in this course, but

MLEs have some nice theoretical properties (which are shared
by least squares estimates in the case of linear regression)
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Two Regression Lines

I Because least squares optimizes vertical deviations (between y
and E (y)), the explanatory and response variables are not
interchangeable

∑
i (yi − ȳ)(xi − x̄)∑

i (xi − x̄) 6=
∑

i (xi − x̄)(yi − ȳ)∑
i (yi − ȳ)

- This means that there are two possible regression lines for any pair
of numeric variables
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Two Regression Lines
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Regression vs. Correlation

I The regression line is mathematically related to the correlation
coefficient

β̂1 = r ∗ sy
sx

I When two variables are perfectly correlated (r = 1), the slope
is just the ratio of standard deviations
I Each 1 SD increase in x predicts a 1 SD increase in y

I When the correlation is imperfect, each 1 SD increase in x
predicts an r < 1 SD increase in y
I This “regression towards the mean” is how the method got it’s

name
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Regression Towards Mediocrity
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Closing Remarks

I Regression is a very general and widely-used modeling
framework
I It is statistical, so we can use our fitted models to make

statistical inferences about a population
I It is interpretable, so we can clearly describe the relationships

suggested by the model
I In the coming weeks, we’ll further generalize this method to

incorperate multiple explanatory variables, a scenario in which
the method really shines


