Introduction to Convolutional Neural Networks

Ryan Miller

Introduction

- The neural network architectures from our previous lecture/lab are limited by the fact that they do not account for spatial structure within the input data
- Convolutional neural networks use the mathematical operation of *convolution* to identify and extract spatially dependent hidden features
 - This is particularly effective for image data, but can be used for any data where the relative positions of input features is meaningful

MNIST Example

To understand convolution, let's start with an example image from the MNIST data:

How would a "vanilla" neural network learn that this example is an eight?

Convolution

Convolution takes a *matrix of weights* known as a **kernel** (or filter) and slides it across an input matrix to generate a **feature map**:

Stride

- Stride describes how a convolution kernel moves across the input to generate the feature map
 - A stride of 1 will move the kernel 1 element at a time (in the direction of rows or columns)
 - A stride of 2 will move the kernel 2 elements at a time
- Larger stride will decrease the dimensions of the feature map produced by convolution, but can also result in a loss of information (if the location where a pattern is most prominent gets passed over)

Stride

The diagram in our earlier example uses a stride of 1. Here is the next element in the feature map:

Stride

The diagram below demonstrates a stride of 2. We can see that this produces a much smaller feature map:

6x6 input

Multiple Input Channels

For inputs with multiple channels (such as images with RGB channels), convolution can use a separate kernel for each channel:

4 x 4

- The main benefit of convolution is that kernels are shared across multiple locations of the input
 - Thus, hidden features can be learned from different locations
- In contrast, the hidden features learned in the "vanilla" neural network architectures we've previously discussed are position sensitive
 - For example, a neuron might learn a horizontal edge, but it could only do so in a specific combination pixel positions
 - If the data were rigorously preprocessed this might be okay, but in general it's a major limitation

Example (horizontal edges)

1 2 1	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1	9	18	3	0	1	8	0	0	0	0	0	0	0	0	2	11	28	20	9	18	23	8	0	0
0 0 0	0	0	0	0	0	0	0	0	11	0	0	28	20	0	0	0	0	4	23	8	1	1	0	0	0	0	0	0	0	18	13	7	13	8	0	0	7	14	0
-1 -2 -1	0	0	0	0	0	0	0	0	0	13	7	0	0	13	8	1	0	0	0	0	0	7	14	7	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0
	0	0	0	0	0	0	9	18	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	38	1111	-	-		**	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	6	20	##	##		-	**	-	**		56	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	5	2	39			0	0	0	0			40	0
	0	0	0	0	0	0	0	0	0	0	0	0	30	##	##	44	##	#2	0	0	0	0	0	0	0	0	5	10	5	##	##	##	0	0	##	##	##	20	0
	0	0	0	0	0	0	0	0	0	38	##	##	##	##	##	-	-	-	==	0	0	0	0	0	0	0	5	10	11	4	37	15	##	**	27	0	5	8	0
	4	7	6	0	0	0	0	0	0	-	##	**	**		uu	-	##	##		18	25	0	0	0	0	0	0	0	D	0	80	##	-	##		##	0	4	0
	0	5	6	3	8	20	97	##	84	0	0	-	##	##	41	0	0	0	0		88		56	10	0	0	0	0	0	##	**	胡用	##	19	88	77	##	17	0
	0	0	0	2	16	39	=	##	44	0	0	0	0	0	0	0	0	0	0	##	##	24	40	0	0	0	0	0	0	##	**	88	0	0	88	##	##	4	0
	5	0	0	0	0	9	=	-	-	**	0	0	0	0	0	0	0	0		-		99	0	0	0	0	0	0	0	##	##	-	-	**	-	**		24	0
	4	5	0	0	0	0	83			-	99	0	0	0	0	0	0	##				10	20	10	0	0	0	0	0	2	11		-			33	9	1	0
	0	4	10	10	5	1	13	##		-	-	**	0	0	0	0	44				53	37	19	0	0	0													
	0	1	5	10	11	8	4	2	22	37	15	0	Ó	7	9	4	0	0	0	0	0	5	8	6	0	0													
	5	1	0	0	0	0	0	0	0	0	0	0	**			44	27	0	Ð	0	0	0	0	0	0	0													
	0	0	0	0	0	0	0	0	0	0	0	##	##	##	##	##	##	##	0	0	0	0	4	0	0	0													
	0	0	0	0	0	0	0	0	0	80		==	##	##	##	##	-	-	==	0	0	0	0	0	0	0													
	0	0	0	0	0	0	0	0	0			**	**	0	0	19	-	##	32	0	0	0	0	0	0	0													
	0	0	0	0	0	0		##	88	0	0	0	0	0	0	0	0	0	0	77		80	17	9	0	0													
	0	0	0	0	0	0			##	0	0	0	0	0	0	0	0	0	62	##		42	0	0	0	0													
	0	0	0	0	0	0		##		-	**	0	0	0	0	0	0	##				48	4	0	0	0													
	0	0	0	0	0	0	18	##	88	-	-	**	**	##	31	44	88					14	24	10	0	0													
	0	0	0	0	0	0	0	18	44	22	-			-	nn	-	-			##	32	11	0	0	0	0													
	0	0	0	0	0	0	0	2	11	6	45	==	##	##	##	##	##	##	33	2	9	0	0	0	0	0													
	0	0	0	0	0	0	0	0	3	11	0	0	0	0	1	0	0	0	13	5	0	0	0	1	0	0													

Example (vertical edges)

1 0 -1 2 0 -2 1 0 -1

0	C	0 0	0	0	0	0	0	0	15	0	0	21	1	15	11	0	0	0	23	0	0	8	9	0	0	0	0	D	0	15	6	21	15	9	23	3	20	0
0	0) (0	0	0	0	0	0	0	6	0	0	0	13	13	9	0	0	20	3	0	4	20	0	0	0	0	0	0	7	12	0	##	##	75	8	29	0
0	¢) (0	0	0	0	0	5	0	4	12	0	0	5	6	13	7	1	11	8	0	0	19	Û	0	0	0	0	0	0	0	0	##	##	##	##	58	0
0	¢) (0	0	0	0	0	7	0	0	0	0	0	77	48	44	56	75	48	0	0	29	6	0	0	0	11	0	0	3	**	##	##	0	##	**	##	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	##	##	##	##	==	##	45	10	58	0	0	0	0	12	0	0	##	-	##	##	0	87	**	##	0
0	¢) (0	0	0	0	0	0	0	0	0	0	0	78	44	88	用材				44	30	8	0	0	0	6	1	0	**	**		0	0	**		62	0
0	0	4	2	0	0	0	0	0	0	0	0	28	##	##	9	0	0	==	##			51	19	0	0	0	3	7	0	0	**	##	0	##	##	**	38	0
0	0	11	5	0	0	0	0	0	3	**	0	50			28	0	0	0	98		-	**	24	0	0	3	0	2	2	0	0	##	12	-	**	**	8	0
0	0	12	1	0	0	0	0	0	-	**	0	14			10	0	0	0	0		-	-	28	0	0	5	0	0	0	74			0	0			17	0
0	3	8	0	0	0	0	0	0	44	**		21	##	47	0	0	0	0	87		-	-	20	0	0	5	0	0	0	##	-	##	0	0	**		19	0
0	5	6	6 0	0	0	0	0	0	-	**		**	68	0	0	0	0	0	##		-	62	21	0	0	0	0	0	0	37	**	##	0	94	**		20	0
0	0) 3	4	1	0	0	0	0	0	##	##	##	##	0	0	0	0	##	-	-		19	32	0	0	2	0	0	0	0	0	0	##	##	##	**	10	0
0	¢) (3	7	4	0	0	0	0	0	##	##	##	0	0	0	##	=	##	38	0	38	22	0	0	6	0	0	0	14	1	0	##	##	25	11	13	0
2	¢	0	0	5	5	0	0	0	0	0	0	68	63	0	0	44	#H	##	##	17	3	19	12	0	0													
6	1	0	0	1	2	2	0	0	0	0	0	17	0	0	12	##	##	==	##	6	3	4	6	0	0													
3	1	0	0	0	0	0	0	0	0	0	0	##	##	0	0	1	群群	=	##	58	2	8	8	Û	0													
0	0) (0	0	0	0	0	0	0	0	**	##	##	0	0	0	0	==	##		58	4	16	0	0													
0	¢	0	0	0	0	0	0	0	74	**	**	##	##	0	0	0	0	0	##		**	3	17	0	0													
0	0) (0	0	0	0	0	0		-	##	##	53	0	0	0	0	0	##	-	22	6	19	0	0													
0	0) (0	0	0	0	0	0		**	**	##	##	0	0	0	0	0	##	-		7	11	0	0													
0	0	0 0	0	0	0	0	0	0	37	**	**	**	##	0	0	0	0	34	**			13	11	0	0													
0	0) (0	0	0	0	0	0	0	0	80	**	74	0	0	0	94	==		38	44	14	20	0	0													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	411	-	# #	==	##	88	18	6	10	0	0													
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	44	##	##		##	18	19	2	1	0	0													
0	0) (0	0	0	0	0	0	14	0	0	0	0	0	4#	##	##	25	10	11	0	1	8	0	0													
0	0	0	0	0	0	0	0	9	0	0	1	0	0	0	22	26	0	0	3	6	0	3	13	0	0													

Padding

- Convolution does not allow the center of a kernel to pass over the edges of the input tensor
 - There are some benefits to this, as it reduces the dimension of the feature map relative to the input tensor
 - However, if the edges contain an important feature it can be problematic

Padding

- Convolution does not allow the center of a kernel to pass over the edges of the input tensor
 - There are some benefits to this, as it reduces the dimension of the feature map relative to the input tensor
 - However, if the edges contain an important feature it can be problematic
- Padding addresses this issue by adding extra rows and columns to create an artificial border around the input tensor
 - This can allow the center of the convolution kernel to pass over the edges of an image (or feature map)
 - Zero padding, which fills the extra rows with zeros, is the most common type of padding

Padding

The diagram below illustrates zero padding:

- Convolutional layers can quickly increase the size and complexity of a network
- While increasing stride can help reduce the size of feature maps, an operation known as *pooling* tends to be more popular
 - Max pooling, which keeps the maximum value in each "patch" of an input feature map is most commonly used
 - Average pooling, which keeps the average value within a "patch" is sometimes used

Pooling

Pooling operations require a patch size and stride. Shown below is pooling using a $2x^2$ patch with a stride of 2:

Max vs. Average Pooling

Max pooling is widely viewed as superior because it highlights and retains the most salient spatial features:

The diagram below demonstrates what the architecture of a convolutional neural network might look like:

- Near the end of a convolutional neural network the feature maps are flattened
 - It's logical to do this when the feature map no longer contains meaningful spatial information
 - It's also necessary to produce a properly formatted output vector
- Pooling helps keep the number of parameters in the network under control
 - For example, AlexNet used roughly 60 million parameters despite including 3 different pooling layers

Links to images used in this presentation can be found below:

- "Convolutional neural networks: an overview and application in radiology"
- Max pooling vs Average Pooling
- CNN architecture example