
Introduction to Convolutional Neural Networks

Ryan Miller

1 / 19



Introduction

▶ The neural network architectures from our previous lecture/lab
are limited by the fact that they do not account for spatial
structure within the input data

▶ Convolutional neural networks use the mathematical operation
of convolution to identify and extract spatially dependent
hidden features
▶ This is particularly effective for image data, but can be used for

any data where the relative positions of input features is
meaningful

2 / 19



MNIST Example

To understand convolution, let’s start with an example image from
the MNIST data:

How would a “vanilla” neural network learn that this example is an
eight?

3 / 19



Convolution

Convolution takes a matrix of weights known as a kernel (or filter)
and slides it across an input matrix to generate a feature map:

4 / 19



Stride

▶ Stride describes how a convolution kernel moves across the
input to generate the feature map
▶ A stride of 1 will move the kernel 1 element at a time (in the

direction of rows or columns)
▶ A stride of 2 will move the kernel 2 elements at a time

▶ Larger stride will decrease the dimensions of the feature map
produced by convolution, but can also result in a loss of
information (if the location where a pattern is most prominent
gets passed over)

5 / 19



Stride

The diagram in our earlier example uses a stride of 1. Here is the
next element in the feature map:

6 / 19



Stride

The diagram below demonstrates a stride of 2. We can see that this
produces a much smaller feature map:

7 / 19



Multiple Input Channels

For inputs with multiple channels (such as images with RGB
channels), convolution can use a separate kernel for each channel:

8 / 19



Remarks on Convolution

▶ The main benefit of convolution is that kernels are shared
across multiple locations of the input
▶ Thus, hidden features can be learned from different locations

▶ In contrast, the hidden features learned in the “vanilla” neural
network architectures we’ve previously discussed are position
sensitive
▶ For example, a neuron might learn a horizontal edge, but it

could only do so in a specific combination pixel positions
▶ If the data were rigorously preprocessed this might be okay, but

in general it’s a major limitation

9 / 19



Example (horizontal edges)

10 / 19



Example (vertical edges)

11 / 19



Padding

▶ Convolution does not allow the center of a kernel to pass over
the edges of the input tensor
▶ There are some benefits to this, as it reduces the dimension of

the feature map relative to the input tensor
▶ However, if the edges contain an important feature it can be

problematic

▶ Padding addresses this issue by adding extra rows and columns
to create an artificial border around the input tensor
▶ This can allow the center of the convolution kernel to pass over

the edges of an image (or feature map)
▶ Zero padding, which fills the extra rows with zeros, is the most

common type of padding

12 / 19



Padding

▶ Convolution does not allow the center of a kernel to pass over
the edges of the input tensor
▶ There are some benefits to this, as it reduces the dimension of

the feature map relative to the input tensor
▶ However, if the edges contain an important feature it can be

problematic
▶ Padding addresses this issue by adding extra rows and columns

to create an artificial border around the input tensor
▶ This can allow the center of the convolution kernel to pass over

the edges of an image (or feature map)
▶ Zero padding, which fills the extra rows with zeros, is the most

common type of padding

12 / 19



Padding

The diagram below illustrates zero padding:

13 / 19



Pooling

▶ Convolutional layers can quickly increase the size and
complexity of a network

▶ While increasing stride can help reduce the size of feature
maps, an operation known as pooling tends to be more popular
▶ Max pooling, which keeps the maximum value in each “patch”

of an input feature map is most commonly used
▶ Average pooling, which keeps the average value within a “patch”

is sometimes used

14 / 19



Pooling
Pooling operations require a patch size and stride. Shown below is
pooling using a 2x2 patch with a stride of 2:

15 / 19



Max vs. Average Pooling

Max pooling is widely viewed as superior because it highlights and
retains the most salient spatial features:

16 / 19



Architecture

The diagram below demonstrates what the architecture of a
convolutional neural network might look like:

17 / 19



Remarks on Architecture

▶ Near the end of a convolutional neural network the feature
maps are flattened
▶ It’s logical to do this when the feature map no longer contains

meaningful spatial information
▶ It’s also necessary to produce a properly formatted output vector

▶ Pooling helps keep the number of parameters in the network
under control
▶ For example, AlexNet used roughly 60 million parameters

despite including 3 different pooling layers

18 / 19



Image Credits

Links to images used in this presentation can be found below:

▶ “Convolutional neural networks: an overview and application in
radiology”

▶ Max pooling vs Average Pooling
▶ CNN architecture example

19 / 19

https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
https://www.herongyang.com/Neural-Network/CNN-What-Is-CNN.html

