Ensembles and Random Forests

Ryan Miller

Limitations of Decision Trees

- Decision trees are easy to interpret and don't require much computation to train
 - However, capturing a complex relationship using a decision tree requires the tree be deep (lots of splits)
 - Deep trees are high variance model and are prone to overfitting
- ► This presentation will introduce *random forests* as an extension of decision tree modeling

Bagging

Random forests rely on a strategy known as *bagging*, or "bootstrap aggregation":

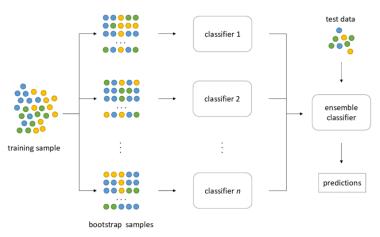


Image credit: https://hudsonthames.org/bagging-in-financial-machine-learning-sequential-bootstrapping-python/

Ensembles

- ▶ Bagging produces an ensemble model comprised of many different base models
 - ► Each base model contributes towards the final prediction of the ensemble, either by majority/weighted voting (classification) or simple/weighted averaging (regression)

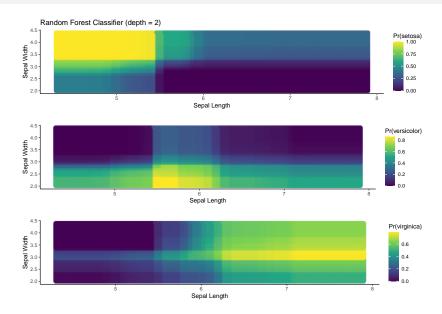
Ensembles

- Bagging produces an ensemble model comprised of many different base models
 - ► Each base model contributes towards the final prediction of the ensemble, either by majority/weighted voting (classification) or simple/weighted averaging (regression)
- Random forests are an ensemble model built using bagging, where each base model is a decision tree
 - What would happen if bagging were not used?

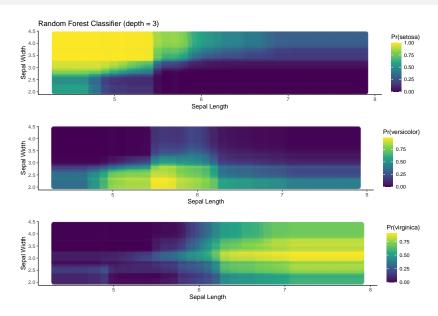
Random Forest

- ▶ Bagging is one strategy used by random forests to address the limitations of a single decision tree
- Another is predictor subsampling, or the random selection of limited candidate pool of predictors to be considered at each split
 - ▶ What might happen if predictor subsampling were not used?

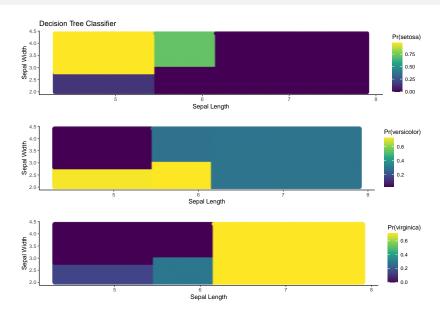
Random Forest (depth = 2)



Random Forest (depth = 3)



Single Decision Tree (depth = 3)



Final Remarks

- Random forests will generally offer better predictive performance than a single decision tree
 - ► The primary downside is that random forests are not easily interpretable
- Important tuning parameters are max_depth, min_samples_split, and max_features (the fraction of predictors considered at each split)
- ► The number of trees in the forest is also important, but including more trees past a certain point will not improve the ensemble.

Final Remarks (cont.)

- max_depth and min_samples_split help prevent base models from being overfit
 - By using an ensemble approach, random forests can be flexible without using deep trees
 - ► Thus, relative to a single decision tree, you should consider using a smaller max_depth and larger min_samples_split
- max_features governs the degree of correlation between base models
 - Smaller values reduce correlations between trees (at the expense of predictive power within individual trees)
 - ▶ Default recommendations are \sqrt{p} for classification and p/3 for regression