
Introduction to Recurrent Neural Networks

Ryan Miller

1 / 18

Introduction

▶ Convolutional neural networks are designed to exploit the
spatial structures of images (or similarly formatted data)

▶ Recurrent neural networks are designed exploit the sequential
structures of certain data types
▶ For example, documents are a sequence of words with

meaningful relative positions
▶ Time-series, such as financial data, or recorded speech or music

are other examples

2 / 18

Recurrence

In general terms, a recurrence relationship takes the form:

ht = fW (ht−1, xt)

▶ ht is a “hidden state” at sequence position t
▶ fW is a function involving weight parameters
▶ xt is a input at position t

Weight parameters are shared across sequence positions (times).

3 / 18

Basic Architecture

The diagram below shows the basic architecture of a simple
recurrent neural network:

▶ At each sequence position, indexed by t, there is a hidden state
and an output, y<t>

▶ Hidden states are a function of the previous state and the input
x<t>

4 / 18

Details

The following linear equation determines the hidden state:

a<t> = g1(Waaa<t−1> + Waxx<t> + ba)

And the following equation determines the output:

y<t> = g2(Wyaa<t> + by)

▶ The weight matrices, Waa, Wax , and Wya, and biases, ba and
by , are shared at every position

▶ g1 and g2 are activation functions

5 / 18

Simple Example

▶ Consider data consisting of a sequence of characters, and a
model that aims to predict the next character in the sequence
▶ For simplicity, we’ll assume the only characters in this model’s

vocabulary are “h”, “e”, “l”, and “o”
▶ Each input is a one-hot vector representing that letter

▶ For example, “h” = [1, 0, 0, 0], e = [0, 1, 0, 0], etc.

6 / 18

Simple Example

Consider the input sequence: “hello”

▶ The first input is the vector x<1> = [1, 0, 0, 0]
▶ We’ll define the initial hidden state as a<0> = [0, 0, 0, 0]

Thus, the input h produces the hidden state:

a<1> = g1(Waa ∗ [0, 0, 0, 0] + Wax ∗ [1, 0, 0, 0] + ba)

Then this hidden state leads to the output:

y<1> = g2(Wyaa<1> + by)

7 / 18

Simple Example (with numbers)
Suppose:

Waa =

1 1 −1 −1
1 0 0 0
0 −1 1 0
0 0 −1 0.5

Wax =

0 0 1 −1
1 1 −1 0

−1 0 1 0
0 0 1 0.5

ba = [0, 0, 0, 0]

and g1 is the sigmoid function

▶ What happens when our first observed character, “h”, is input?
8 / 18

Simple Example (with numbers)

a<1> = g1

(
0 0 1 −1
1 1 −1 0

−1 0 1 0
0 0 1 0.5

 ∗ [1, 0, 0, 0]
)

or

a<1> = g1
(
[0, 1, −1, 0]

)
= [0.5, 0.73, 0.27, 0.5]

What is the role of a<1> in our network?

9 / 18

Simple Example (with numbers)

One place where a<1> is used is the generation of the predicted
output at position t. Let’s suppose:

Way =

0 1 0 −1.5
1 0 0 0
0 −0.5 1 0
0 0 −1 1

and

by = [0, 0, 0, 0]

How do we find this output?

10 / 18

Simple Example (with numbers)

We have:

y<1> = g2

(
0 1 0 −1.5
1 0 0 0
0 −0.5 1 0
0 0 −1 1

 ∗ [0.5, 0.73, 0.27, 0.5]
)

or

y<1> = g2
(
[−0.02, 0.5, −0.095, 0.23]

)

11 / 18

Simple Example (with numbers)

▶ If g2() is the softmax function, the predicted output is “e”
(which happens to be correct)

▶ The associated probability is given by
exp(0.5)

exp(−0.02)+exp(0.5)+exp(−0.095)+exp(0.23) = 0.34

12 / 18

Model Training

Similar to previous neural network architectures we’ve discussed,
training a recurrent neural network consists of two important steps:

▶ Forward-propagation of examples to calculate the cost and
other intermediate quantities

▶ Back-propagation to find the gradient and update the
network’s weights and biases

13 / 18

Model Training

The cost, at time-point t, is a function (such as cross-entropy loss)
of y<t>:

y<t> = g2(Wya ∗ [g1([Waa, Wax] ∗ [x<t>, a<t−1>] + ba)] + by)

▶ Here, we’ve contactenated (stacked) matrices Waa and Wax
and the vectors x<t> and a<t−1> to simplify the form of the
model (since we can say Wc = [Waa, Wax])

▶ We should note that a<t−1> is a function of W = [Waa, Wax],
so the chain rule in back-propagation will lead us to work
backwards through time

We will not cover the details of gradient calculations for these
models.

14 / 18

Applications

With minor modifications, the basic model architecture we’ve
covered can be adapted to a wide range of applications, including:

1. Generative Models - a single input predicts a sequence of
output (one-to-many)

2. Sequence Classification Models - a sequence input predicts a
single output (many-to-one)

3. Named Entity Recognition Models - a sequence input predicts
sequence output (many-to-many)

15 / 18

Generative Models

Suppose we’ve trained an RNN model and we provide a single input
(perhaps the first letter or word in sequence). We can use the
prediction ŷ<1> as the next sequential input

Notice how this architecture generates a sequential response from a
single input.

16 / 18

Sentiment Classification

Suppose we’re only interested in a single output corresponding to
the entire input sequence:

▶ This model might be used to classify the sentiment of a text
▶ The architecture is similar to our example, except the weights

in Wya will be learned differently during training

17 / 18

Named Entity Recognition Models

Suppose we’d like to make use of every predicted output in our
original model:

We used this architecture in our example, it can also be used to
classify words as nouns, verbs, or adjectives while considering their
position in a sentence.

18 / 18

