
Non-linearity and Feature Expansion

Ryan Miller

1 / 14



Introduction

▶ Linear regressions and variants like logistic/softmax regression
often lack the flexibility to learn certain patterns
▶ Sometimes this bias can be beneficial due to the corresponding

reduction in variance, but in other situations it can be
problematic

▶ This lecture introduces a few strategies to add flexibility to
linear models (ie: reduce their bias)
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Example

Consider a simple application aiming to predict the resting
metabolic rate of an individual using their bodyweight.

weight_lbs rate_kcal
104.79 1079
106.68 1146
108.78 1115
110.46 1161
120.96 1325
128.94 1351

The raw data might consist of a single predictor and the outcome.
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Example

We might consider a simple linear model to represent this
relationship:
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How is it doing?
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Feature Expansion

To add flexibility to our linear model, we might expand our single
predictor using polynomials:

X1 X2 X3 rate_kcal
104.79 10980.94 1150693 1079
106.68 11380.62 1214085 1146
108.78 11833.09 1287203 1115
110.46 12201.41 1347768 1161
120.96 14631.32 1769805 1325
128.94 16625.52 2143695 1351

We’re now using 3 columns to represent an individual’s weight.
They are: weight, weight squared, and weight cubed.
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Polynomial Expansion

A linear regression model fit to the expanded data is shown in red:
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Did feature expansion improve the accuracy of our model on the
training data?
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Bias-Variance Tradeoff
Because our second model estimated 3 weight parameters (and 1
bias) from the data, it has greater flexibility to represent small
trends.
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However, more flexibility is not always better, as the blue line above
depicts and 8th degree polynomial expansion. What’s wrong with
this model?
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Discretization

A simple alternative to polynomial expansion is discretization:

(90.3,143] (143,196] (196,248] (248,301] rate_kcal
1 0 0 0 1079
1 0 0 0 1146
1 0 0 0 1115
1 0 0 0 1161
1 0 0 0 1325
1 0 0 0 1351

The idea is to split a numeric predictor in to categories and
represent them using one-hot encoding.
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Discretization

The discretizing weight into 4 equally spaced bins yields the
following model:
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What are some strengths/weaknesses of this approach?
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Splines

Splines are an alternative without many of the negative aspects of
polynomials and descretization:

X1 X2 X3 rate_kcal
0.1768971 0.0128790 0.0003126 1079
0.1964682 0.0163547 0.0004538 1146
0.2172099 0.0206527 0.0006546 1115
0.2330538 0.0244103 0.0008523 1161
0.3175760 0.0537322 0.0030304 1325
0.3660471 0.0817907 0.0060919 1351

Basis splines, or “b-splines”, use a basis matrix to represent
piecewise polynomials that must connect at certain interior knots
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B-splines

Polynomials with degree = 1 are just lines, the model below
demonstrates a b-spline with 3 knots and degree = 1:
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B-splines

Higher degree splines ensure smoothness by requiring continuity of
derivatives up to the order degree-1 (so quadratic splines require
continuity of the first derivative, or slope at the location of the
knot):
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B-splines

The polynomial degree and number of knots can be used to
manipulate the flexibility of b-splines:
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The red line uses 3rd degree polynomial expansion, the green is a
3rd degree basis spline expansion with knots at 150, 200, and 250
lbs, the blue reduces the degree to 2 and introduces additional knots
at 1110 and 180 lbs.
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Closing Remarks

▶ Splines are useful when inspection of the relationship between a
predictor and the outcome shows evidence of non-linearity
▶ The only scenario in which polynomials might be justified over

splines are models intended to be explained to a non-technical
audience

▶ Discretization is also generally less preferable to splines, but it
might make sense in applications where clear thresholds are
used
▶ For example, a grade of 70% might be substantially different

from a grade of 69%, but 71% or 72% might be roughly the
same as a 70%
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