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Principal Component Analysis PCA Example

Outline

In today’s class, we will. . .
• Discuss Principal Component Analysis (PCA) as an example of unsupervised learning
• Investigate matrix formulation for PCA
• Interpret PCA in context
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Section 1

Principal Component Analysis
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Principal Component Analysis PCA Example

Dimensionality Reduction

Suppose you collect a sample of n observations on p predictors X1, . . . , Xp, where p is
relatively large. Suppose further that some of the predictors are correlated with one
another.

• Any predictive model for a response Y based on all of the correlated variables will
underperform due to instability in parameter estimates.

It may be difficult to fit complex models accurately, given limited number of observatiosn
compared to predictors.

• If p is larger than n, it may not be possible to fit certain models to the data (for
example MLR models cannot be used)

One solution is to perform variable selection and drop some less useful predictors.
• But dropping variables completely loses possible valuable information.
• Instead, we can combine variables into new ones that adequately describe the variance

in the data, and drop those that have limited utility in explaining that variance.
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Data Cloud

Consider the weight and belly circumference for a random sample of 100 toddlers.
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Weight and Belly Circumference for 100 Toddlers

What are the approximate standard deviations of Weight and Belly?
## sd_Weight sd_Belly
## 1 0.8981994 0.9843542
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Data Cloud

Consider the weight and belly circumference for a random sample of 100 toddlers.
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But do either of these variables represent the direction of maximal variation in the data?
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Maximal Variation

Can we find a line along which the observations vary the most?
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Variation Decomposition

How much variation occurs perpendicular to this line?
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First Principal Component

The first principal component of centered variables X1, . . . , Xp is a normalized linear
combination with largest variance, taking the form:

Z1 = ϕ11X1 + · · · + ϕp1Xp with
∑

ϕ2
i1 = 1

• The vector ϕ1 =
(
ϕ11 · · · ϕp1

)T is called the loading of the 1st PC
• The loading ϕ1 ∈ Rp points in the direction in feature space along which the data varies

the most.

• The values
zi1 = ϕT

1 xi = ϕ11xi1 + ϕ21xi2 + . . . ϕp1xip

for 1 ≤ i ≤ n are called the scores of the 1st PC
• The score zi1 is the coordinate of the ith observation xi in the 1st PC
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Optimization Problem

The 1st PC has loading ϕ1 whose scores zi1 = ϕ1xi have largest possible variance

• As Z1 is centered, the first PC loading vector ϕ1 solves the following optimization
problem:

ϕ1 =argmax∥ϕ1∥2=1Var(Z1)

=argmax∥ϕ1∥2=1

{
1
n

n∑
i=1

z2
i1

}
= argmax∥ϕ1∥2=1

{
1
n

n∑
i=1

(ϕT
1 xi )2

}
• But note by matrix multiplication,

n∑
i=1

(ϕT
1 xi )2 = ϕT

1 XT Xϕ1

• And so equivalently, the 1st PC has normalized loading ϕ1 which maximizes ϕT
1 X T Xϕ1

• A standard result in linear algebra:
• The maximal value of ϕT

1 XT Xϕ1 is the largest eigenvalue of the covariance matrix
XT X and occurs when ϕ is the associated normalized eigenvector.
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Additional Principal Components

The second principal component Z2 is the linear combination of X1, . . . , Xp that has
maximal variance among all lin. combos. that are uncorrelated with Z1, and takes the form

Z2 =ϕ12X1 + · · · + ϕp2Xp with ∥ϕ2∥2 = 1 and Corr(Z1, Z2) = 0

• Z2 can also be obtained by projecting all observations onto the hyperplane
perpendicular to ϕ1 and finding the 1st principal component of the resulting data set.

In general, the kth principal component is a linear combination that has maximal variance
among all combos that are uncorrelated with Z1, . . . , Zk−1

Zk =ϕ1kX1 + · · · + ϕpkXp

with ∥ϕk∥2 = 1 and Corr(Zj , Zk) = 0, for all 1 ≤ j ≤ k − 1
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PCA Visual

The first principal component

18

19

20

21

22

22 23 24 25 26
Weight

B
el

ly

Z1 =0.67 · (Weight − 24.1) + 0.75 · (Belly − 19.8)

ϕ1 =
(

0.67 0.75
)T
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PCA Visual

The 2nd principal component is perpendicular to the 1st:
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Z2 =0.75 · (Weight − 24.1) − 0.67 · (Belly − 19.8)

ϕ2 =
(

0.75 −.67
)T
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PCA Visual

What is leftover?
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PCA Visual

Rotating axes so they lie along principal components:
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Two Geometric Perspective

Perspective 1: Principal components are directions in feature space along which data vary
the most.

Perspective 2: The first M principal components are the best M-dimensional
approximation to the p-dimensional data set.

• Observe that the loading vector ϕ1 generates the line in p-dim space that is closest to
the n observations in the data set.

• Together, the loading vectors ϕ1, ϕ2 generate the 2D plane in p-dim space that is
closest to the n observations

• Generally, the first M loading vectors ϕ1, . . . , ϕM generate an M-dimensional
hyperplane in p-dim space that is closest to the n observations.

xij ≈
M∑

m=1

zimϕjm where zim = ϕT
mxi = ϕ1mxim + · · · + ϕpmxip
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Properties of PCA

How much information is lost when we project the data set onto the hyperplane spanned
by the first M principal component loading vectors?

• The Total Variance (TV) of the data set is

TV =
p∑

j=1

Var(Xj) =
p∑

j=1

1
n

n∑
i=1

x2
ij

• While the variance explained by the mth principal component Vm is

Vm = 1
n

n∑
i=1

z2
im = 1

n

n∑
i=1

(
p∑

j=1

ϕjmxij

)2

• Thus, the Proportion of Variance Explained by the mth principal component PVEm is

PVEm = Vm

TV =

∑n
i=1

(∑p
j=1 ϕjmxij

)2∑p
j=1

∑n
i=1 x2

ij
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Principal Component Analysis PCA Example

How many principal components?

We can create the scree plot of PVEm versus m and look for the point of diminishing
returns (called the elbow)
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• Here, 2 or 3 PCs seem sufficient.

Alternative: look data structure present in the first several principal components, and then
add more components until the structures of interest stops changing
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Section 2

PCA Example
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Principal Component Analysis PCA Example

Perfumes

12 perfumers were asked to rate 12 perfumes on 11 scent adjectives
## [1] "spicy" "heady" "fruity" "green" "vanilla" "floral"
## [7] "woody" "citrus" "marine" "greedy" "oriental"

Each was rated on a scale of 1-10, and ratings for each perfume were averaged across
experts.
## # A tibble: 6 x 12
## perfume spicy heady fruity green vanilla floral woody citrus marine greedy
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 "Angel" 3.22 8.26 1.9 0.133 7.75 2.09 1.05 0.142 0.125 8.28
## 2 "Aromatics~ 7.41 8.17 0.575 0.35 1.75 3.71 3.39 0.375 0.0583 0.258
## 3 "Chanel N5" 3.93 8.42 1.18 0.5 1.73 4.66 1.02 0.6 0.05 0.458
## 4 "Cin\xe9ma" 0.983 2.07 5.2 0.267 4.18 5.32 1.25 0.775 1.02 3.66
## 5 "Coco Made~ 0.925 0.717 4.58 1.2 2.02 7.31 1.13 1.17 1.14 2.72
## 6 "J'adore E~ 0.108 1.03 6.85 1.62 0.183 8.51 0.925 2.13 1.91 1.47
## # i 1 more variable: oriental <dbl>
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Principal Component Analysis PCA Example

Fitting the PCA

We use software (Python, R, etc.) to fit a PCA, which will contain a number of useful
quantities
## [1] "sdev" "rotation" "center" "scale" "x"

The rotation value contains the principal component loadings

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

spicy -0.32 -0.31 0.15 -0.10 0.21 0.00 0.29 -0.17 0.12 -0.77 0.00
heady -0.35 -0.11 0.25 0.16 -0.21 -0.47 0.36 0.48 0.19 0.22 -0.23
fruity 0.34 0.15 -0.36 -0.17 0.26 -0.49 0.17 -0.21 -0.01 -0.07 -0.57
green 0.30 -0.15 0.62 0.27 0.36 0.31 0.05 -0.06 -0.04 0.14 -0.42
vanilla -0.19 0.51 0.17 -0.28 -0.09 0.17 -0.29 0.40 -0.26 -0.32 -0.38
floral 0.34 -0.20 -0.27 0.07 -0.17 0.28 -0.13 0.39 0.63 -0.22 -0.18
woody -0.25 -0.37 -0.14 -0.59 0.48 0.15 -0.10 0.22 0.04 0.35 -0.05
citrus 0.33 -0.18 0.38 -0.18 0.07 -0.54 -0.51 0.14 0.04 -0.17 0.28
marine 0.32 -0.08 0.27 -0.61 -0.51 0.12 0.39 -0.13 -0.02 0.06 0.01
greedy -0.09 0.58 0.23 -0.16 0.26 -0.02 0.09 -0.17 0.65 0.11 0.20
oriental -0.35 -0.18 0.08 -0.04 -0.35 -0.05 -0.47 -0.51 0.25 0.12 -0.39
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Principal Component Analysis PCA Example

Visualize

How can we visualize?

• Representing the data set itself requires 11 dimensions.
• Representing all pairwise structure requires

(55
2

)
= 55 pairwise scatterplots

We can use principal components to focus our attention on small dimensional
representation which describes most of the structure.
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Principal Component Analysis PCA Example

Scatterplot

Angel

Aromatics Elixir

Chanel N5

Cin.ma

Coco Mademoiselle

J'adore EP

J'adore ET

L'instant

Lolita Lempicka

Pleasures

Pure Poison

Shalimar
−2

−1

0

1

2

3

−5.0 −2.5 0.0 2.5 5.0

Z1

Z
2

Prof Wells (STA 395: Machine Learning) Principal Component Analysis February 1st, 2024 23 / 26



Principal Component Analysis PCA Example

Interpretation

Effectively interpreting principal the loading vector for principal components usually
requires domain knowledge. But we can try!

What does Z1 represent? (i.e for what values of x is Z1 large? small?)
## spicy heady fruity green vanilla floral woody citrus
## -0.324 -0.352 0.340 0.304 -0.192 0.344 -0.252 0.330
## marine greedy oriental
## 0.322 -0.085 -0.353

What does Z2 represent?
## spicy heady fruity green vanilla floral woody citrus
## -0.307 -0.114 0.147 -0.147 0.512 -0.201 -0.366 -0.183
## marine greedy oriental
## -0.075 0.584 -0.182
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Principal Component Analysis PCA Example

Another Visualization
We can create a biplot, which shows the location of each observation in the first 2
principal components, along arrows indicating the loading vectors.
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Scree Plot

The scree plot can be used to find the “elbow”
• In this case, 3 principal components might be optimal
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